labial side
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Qiannan Sun ◽  
Wenhsuan Lu ◽  
Yunfan Zhang ◽  
Liying Peng ◽  
Si Chen ◽  
...  

Abstract Backgroud To analyze the morphological changes of the anterior alveolar bone after the retraction of incisors in premolar extraction cases and the relationship between incisor retraction and remodeling of the alveolar base represented by points A and B displacements. Methods Pre- (T0) and post-treatment (T1) lateral cephalograms of 308 subjects in the maxilla and 154 subjects in the mandible who underwent the orthodontic treatment with extraction of 2 premolars in upper or lower arches were included. Alveolar bone width and height in both the maxillary and mandible incisor area were measured at T0 and T1 respectively. By superimposing the T0 and T1 cephalometric tracings, changes of points A and B, and the movement of the incisors were also measured. Then the correlation between incisor movement and the displacements of points A and B was analyzed. Results The alveolar bone width (ABW) showed a significant decrease in both maxilla and mandible (P < 0.001) except the labial side of the mandible (P > 0.05). The alveolar bone height (ABH) showed a significant increase in the labial side of maxilla and a significant decrease in the lingual side of maxilla and mandible. A strong positive correlation was verified between incisor movement and position changes of points A and B in both horizontal and vertical directions. Conclusions Anterior alveolar bone width and height generally decreased after orthodontic treatment. Incisor retraction led to significant position changes of points A and B. The decrease of anterior alveolar bone due to significant incisor retraction should be taken into account in treatment planning.


2021 ◽  
pp. 146531252110108
Author(s):  
Yumi Ozeki ◽  
Hiroya Ozaki ◽  
Kenji Fushima

Objective: To evaluate the gingival condition due to adult orthodontic treatment using the clinical crown height (CCH) as an index. Design: Retrospective study. Setting: Department of Orthodontics at a university. Participants: A total of 21 adult female patients with healthy periodontal tissue were treated by means of the multi-bracket appliance with extraction of four first premolars. Methods: Three-dimensional (3D) digital dental models were reconstructed to assess the vertical movement of the free gingival margin caused by adult orthodontic treatment. Pre- and post-treatment CCH were measured, and changes in CCH due to treatment were examined. Results: The change in CCH by orthodontic treatment was able to be assessed objectively using 3D digital models of the dental casts. In the upper dentition, a significant reduction in CCH was found on the labial and lingual sides of the central incisor, with a mean of –0.28 mm and –0.34 mm, respectively ( P < 0.001). In contrast, a significant increase in CCH was found on the labial side of the lateral incisor with a mean of 0.75 mm ( P < 0.001). In the lower dentition, CCH on the lingual side of the canine, the second premolar and the first molar increased significantly ( P < 0.001), with a mean of 0.41 mm, 0.45 mm and 0.50 mm, respectively. For the buccal side, the second premolar showed a significant increase in CCH with a mean of 0.61 mm ( P < 0.001). Conclusion: By using the CCH as an index, it was possible to assess the gingival condition after active orthodontic treatment.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang Lei

Abstract Background Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = − 3.258- 0.139× changes of inclination (T1-T0) + 2.533 × apex displacement (T1-T0). Conclusions Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion. Moreover, the equation in predicating area of alveolar bone may reduce the risks of placing the teeth out of the bone boundary during 3D digital setups.


2020 ◽  
Vol 20 (09) ◽  
pp. 2040009
Author(s):  
YONGQING CAI

In sliding mechanics, resistance to sliding (RS), including friction, binding, and notching, generated at a wire-bracket interface has a bearing on the force transmitted to the teeth and further influences the biomechanical behavior associated with tooth movement efficiency. Objective: This study aimed to propose and verify the insertion of a rectangular thin-walled sleeve between an archwire and a bracket to minimize the resistance effect on the biomechanical behavior of tooth movement by using the finite element (FE) method. Material and methods: A 3D FE solid model was constructed and composed of mandibular dentitions, including the surrounding tooth-supporting structures and fixed self-ligating appliances. The translation of the left mandibular canine was simulated (0.1[Formula: see text]mm and 0.3[Formula: see text]mm) from the labial side to the lingual side with or without the thin-walled sleeve by using eight kinds of archwires with various dimensions and cross-sections by FE methods. Results: FE analysis indicated that the canine’s maximum initial displacement and the highest periodontal ligament (PDL) von Mises stress were mainly influenced by the orthodontic wire and the insertion of the thin-walled sleeve. Without the thin-walled sleeve, rectangular archwires could initiate a more optimal tissue response than round archwires. However, the insertion of the thin-walled sleeve between the small round archwire and the bracket significantly presented the most optimal biological responses in all of the cases. Conclusion: FE results revealed that the insertion of a thin-walled sleeve in a small round archwire and a bracket could have a positive influence on final tooth movement.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang LEI

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction.Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated.Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0).Conclusions: Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion. Moreover, the equation in predicating area of alveolar bone may reduce the risks of placing the teeth out of the bone boundary during 3D digital setups.


2020 ◽  
Author(s):  
Ninna Shuhaibar ◽  
Arthur R. Hand ◽  
Mark Terasaki

AbstractOdontoblast processes are thin cytoplasmic projections that extend from the cell body at the periphery of the pulp toward the dentin-enamel junction. The odontoblast processes function in the secretion and assembly of dentin during development, participate in mechanosensation, and aid in dentin repair in mature teeth. Because they are small and densely arranged, their three-dimensional organization is not well documented. To gain further insight into how odontoblast processes contribute to odontogenesis, we used serial section electron microscopy to examine these processes in the predentin region of mouse molars and incisors. In molars, the odontoblast processes are tubular with a diameter of ~1.8 μm. The odontoblast processes near the incisor tip are similarly shaped, but those midway between the tip and apex are shaped like plates. The plates are radially aligned and longitudinally oriented with respect to the growth axis of the incisor. The thickness of the plates is approximately the same as the diameter of molar odontoblast processes. The plates have an irregular edge; the average ratio of width (midway in the predentin) to thickness is 2.3 on the labial side and 3.6 on the lingual side. The plate geometry seems likely to be related to the continuous growth of the incisor and may provide a clue as to the mechanisms by which the odontoblast processes are involved in tooth development.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang LEI

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0). Conclusions: Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion.


2020 ◽  
Author(s):  
Qiannan Sun ◽  
Si Chen ◽  
Wenhsuan Lu ◽  
Yunfan Zhang ◽  
Liying Peng ◽  
...  

Abstract Background: The morphology of the anterior alveolar bone may change after the retraction of incisors in premolar extraction cases in orthodontics.Methods: Pre- (T0) and post-treatment (T1) lateral cephalograms of 477 subjects in the maxilla and 226 subjects in the mandible who underwent the orthodontic treatment with extraction of 2 premolars in upper or lower arches were included. Alveolar bone width and height in both the maxillary and mandible incisor area were measured at T0 and T1 respectively. By superimposing the T0 and T1 cephalometric tracings, changes of points A and B, and the movement of the incisors were also measured.Results: The alveolar bone width (ABW) showed a significant decrease in both maxilla and mandible (P<0.001) except the labial side of the mandible, which exhibited slight increase, though statistically insignificant (P>0.05). The alveolar bone height (ABH) showed a significant increase in the labial side of maxilla and a significant decrease in the lingual side of maxilla and mandible. A strong positive correlation was observed between incisor movement and position changes of points A and B both in the horizontal and vertical direction. Conclusions: Anterior alveolar bone width and height generally decreased after orthodontic treatment. Incisor retraction led to a significant position changes of points A and B.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
lang lei

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0). Conclusions: Retraction of incisors with palatal apex displacement reduced periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion.


2019 ◽  
Author(s):  
Qiannan Sun ◽  
Si Chen ◽  
Wenhsuan Lu ◽  
Yunfan Zhang ◽  
Liying Peng ◽  
...  

Abstract Background: The morphology of the anterior alveolar bone may change after the retraction of incisors in premolar extraction cases in orthodontics. Methods: Pre- (T0) and post-treatment (T1) lateral cephalograms of 477 subjects in the maxilla and 226 subjects in the mandible who underwent the orthodontic treatment with extraction of 2 premolars in upper or lower arches were included. Alveolar bone width and height in both the maxillary and mandible incisor area were measured at T0 and T1 respectively. By superimposing the T0 and T1 cephalometric tracings, changes of points A and B, and the movement of the incisors were also measured. Results: The alveolar bone width (ABW) showed a significant decrease in both maxilla and mandible (P<0.001) except the labial side of the mandible, which exhibited slight increase, though statistically insignificant (P>0.05). The alveolar bone height (ABH) showed a significant increase in the labial side of maxilla and a significant decrease in the lingual side of maxilla and mandible. A strong positive correlation was observed between incisor movement and position changes of points A and B both in the horizontal and vertical direction. Conclusions: Anterior alveolar bone width and height generally decreased after orthodontic treatment. Incisor retraction led to a significant position changes of points A and B.


Sign in / Sign up

Export Citation Format

Share Document