scholarly journals Statistical Analysis on the Static Characteristics of the Geosynthetic Encased Stone Column

Author(s):  
Fang Ou Yang ◽  
Yingang Wang ◽  
Zuoju Wu ◽  
Zhijia Wang

Abstract The geosynthetic encased stone column is made of stone column encased with geosynthetic encasement. The geosynthetic encased stone column is often used for foundation treatment of roadbeds, dams, buildings and other structures. At present, a series of new developments have been made in the researches of bearing capacity, stress concentration ratio and deformation of the geosynthetic encased stone column. This paper statistically analyzes the three important static characteristics of the geosynthetic encased stone column.

Author(s):  
Qiang Luo ◽  
Ming Wei ◽  
Qingyuan Lu ◽  
Tengfei Wang

AbstractPiled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period. Stress concentration ratio, defined as the ratio of vertical stress carried by pile heads (or pile caps if applicable) to that by adjacent soils, is a fundamental parameter in the design of piled embankments. In view of the complicated load transfer mechanism in the framework of embankment system, this paper presents a simplified analytical solution for the stress concentration ratio of rigid pile-supported embankments. In the derivation, the effects of cushion stiffness, pile–soil interaction, and pile penetration behavior are considered and examined. A modified linearly elastic-perfectly plastic model was used to analyze the mechanical response of a rigid pile–soil system. The analytical model was verified against field data and the results of numerical simulations from the literature. According to the proposed method, the skin friction distribution, pile–soil relative displacement, location of neural point, and differential settlement between the pile head (or cap) and adjacent soils can be determined. This work serves as a fast algorithm for initial and reasonable approximation of stress concentration ratio on the design aspects of piled embankments.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Siaw Yah Chong ◽  
Khairul Anuar Kassim ◽  
Kenny Tiong Ping Chiet ◽  
Choy Soon Tan

Marine clay, which is widely encountered in coastal area in Malaysia, is a problematic base material. Previous researchers reported that deep lime stabilisation can significantly improve clay. However,  insufficient  confining pressure from surrounding soil normally lead to the inferior performance on the upper part of column such as column head crushing and larger deformation on the surrounding soil at toppart of column. Therefore, geotextile encapsulation was proposed for lime column in this study. Static response and stress distribution are essential in the understanding on behaviour of columnar stabilised soil under vertical load. Multi stages loading tests were conducted onPontian marine clay, with and without geotextile encapsulation.Stress concentration ratio (σmid/ σsoil) was examined in each loading stage, where it is defined as stress on column (σmid) divided by stress on surrounding soil (σsoil). The samples were cured for 14, 28 and 56 days before tested. It was found that stress concentration ratio was dependent on column materials strength properties and applied loading. Geotextile encapsulation increased the stress concentration ratio on lime column.Stress concentration increment effect by geotextile encapsulation was further enhanced by the confining pressure of surrounding soil; however, the effect reduced with increase of applied loading. Higher stress concentration ratio indicated lesser load on surrounding soil and therefore the soil settlement could be reduced


2020 ◽  
Vol 857 ◽  
pp. 399-408
Author(s):  
Maki J. Mohammed Al-Waily ◽  
Mohammed Y. Fattah ◽  
Maysa Salem Al-Qaisi

In the present study, 24 laboratory models on soft clay treated with stone columns were carried out. The results for each case are analysed for the purpose of constructing a statistical model linking the variables studied. The experiments showed that the stress concentration and bearing capacity of soil treated with stone column increase with increasing the undrained shear strength (cu), number of columns and L/d ratio. The models represent a single stone column and a group of stone columns. The studied variables are three dependent variables, the stress concentration ratio (n), bearing capacity of soil treated with stone column (q) and the settlement improvement ratio (Sr) due to the existence of stone columns. The independent variables are six: the undrained shear strength of clay soil, with three values (6, 9 and 12 kPa), the number of stone columns (1, 2, 3 and 4 columns) and the length (L) to the diameter (D) of the stone column or (L/D) ratio in two values (6 and 8). Besides, the bearing capacity of the soil treated (q) with stone columns and the settlement improvement ratio were used in some statistical models as independents. After regression analysis, a set of equations that correlate the previous variables have been suggested. The incepted values for dependent variables are close to the laboratory results.


2011 ◽  
Vol 378-379 ◽  
pp. 502-506 ◽  
Author(s):  
Wei Ping Cao ◽  
Min Zhao ◽  
Qi Chao Shi

Piled embankments are increasingly used to construct highways on soft soils. End-bearing piles for supporting embankment exhibit different characteristics for the soil arch developed within the embankments. A numerical analysis was conducted to evaluate the soil stress concentration ratio, pile and soil settlements, pile axial force, negative skin friction (NSF) and location of the neutral plane (NP) during embankment filling and consolidation of soft soils. The results indicate that the stress concentration ratio varies with time and most of the embankment load is born by the pile. The soil pressure on the soft soils increase and reach a maximum value during the filling, then decrease gradually and maintain nearly a constant value at the end of the consolidation. The settlement of shallow soft soils differs significantly from that of the deep soft soils. The location of the NP shows a complicated variation.


Sign in / Sign up

Export Citation Format

Share Document