surrounding soil
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 118)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Marina Zhurina ◽  
Andrei Gannesen ◽  
Sergey Martyanov ◽  
Anna Kallistova ◽  
Victor Gerasin ◽  
...  

This study aimed to investigate the dependence of the biocidal activity of polyguanidine (co)polymers on their structure during the formation of biofilms by active PE-degrading cultures of model microorganisms. The Bc-2 copolymer of methacryloyl guanidine hydrochloride (MGHC) and diallyldimethylammonium chloride (DADMAC), which suppressed both the formation of biofilms and the growth of planktonic cultures, exhibited the highest activity. When PE was exposed in tropical soil, the composition of the microbial community on the PE surface differed significantly from that of the community in the surrounding soil. In particular, the proportion of Actinobacteria increased from 7% to 29%, while the proportion of Bacteroidetes decreased from 38% to 8%. Keywords: biofilms, polyhexamethylene guanidine salts, dynamics of biofilm formation, antibiofilm effect, composite materials


2022 ◽  
Vol 9 ◽  
Author(s):  
Song Xu ◽  
Jingjing Wang ◽  
Xiaoxia Zhang ◽  
Rong Yang ◽  
Wei Zhao ◽  
...  

The study on sediments in the marginal basins of the Tibetan Plateau is of great significance for global climate change. The geological information of the Linxia Basin has been intensely investigated; however, the profiles of the microbial communities in this basin remain largely unknown. Here, based on the 16S rRNA high-throughput sequencing method, the bacterial community structure vertical succession is studied with different thicknesses of sedimentary samples. The bacterial community with a total of 1,729,658 paired reads distributed within 1,042 phylogenetic amplicon sequence variants (ASVs) from twenty sediments, and three surrounding soil samples were sequenced. First, high-throughput sequencing results highlight the surrounding soil sample bacterial community structures were significantly different from those recovered from the sediment samples. In addition, as observed in the PCoA and PERMANOVA, there is a dramatic change shift event of the community structure at M311. Our data suggest that shifts in relative abundances of the abundant taxa (˃1%) and the significant variations in the diversity of bacterial community implied community structure responses to changes in different sedimentary layers. Predicted community function changes demonstrate that the sediment bacterial community aerobic chemoheterotrophy has been significantly increased, and we believe that the possible influence of the lithofacies changes from the anaerobic system to the aerobic environment, possibly accompanied by the significant uplift of the plateau that has previously been associated with enhanced aridity in Central Asia at ∼8 Ma. Taken together, these results illustrate the potential for the microbial community as a biological indicator in sediment ecosystems to reconstruct paleoenvironments.


Author(s):  
Mark R. Miller ◽  
Evgeniy Y. Titov ◽  
Sergey S. Kharitonov ◽  
Yong Fang

The study examines the question of the tunnel behavior under seismic or geophysical load in the zone of changes in the hardness of the surrounding soil mass. In the course of the study, the internal forces and displacements arising in the structure of a tunnel in the zone of intersection of the boundaries of soil layers with different properties, in the case when these layers move relative to each other, were determined by analytical and numerical solutions. The data obtained by the analytical method was compared to numerical models using practical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Dong ◽  
Ling Mei ◽  
Shuyan Yang ◽  
Liang He

The excavation of foundation pits is one of the most important factors causing changes to the initial stress state of its surrounding soil, thus affecting the safety of nearby existing subway tunnels. In order to study the deformation in metro lines induced by adjacent foundation pit excavation, a three-dimensional model based on an actual engineering case was established, and the deformation regulations of the retaining wall, surrounding soil, and tunnels were investigated, which also validated the model’s feasibility. Additionally, the deformation and strain response of the subway tunnel under different selection parameters of the enclosing structure and soil were studied. The results showed that, after the foundation pit excavation, the soil inside the pit underwent an uplift, the surrounding soil outside of the pit showed vertical settlement, and the retaining wall created a deformation towards the interior of the pit. Mechanical parameters of plate elements have a small influence on the deformation of metro lines. Axial strain and maximum displacement of the subway tunnel increase with the increase in the soil’s Poisson’s ratio, and on the contrary, they decrease with the increase in the m-value and G 0 , ref . The maximum responses of the subway tunnel came from changes to G 0 , ref and υ . These analysis results can be used for the safety evaluation of subway tunnel operation, design, and construction in other similar engineering settings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Lohse ◽  
Rebecca Haag ◽  
Eva Lippold ◽  
Doris Vetterlein ◽  
Thorsten Reemtsma ◽  
...  

The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 μm thin sections. The target metabolites were detected with a spatial resolution of 25 μm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 μm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a non-targeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-12
Author(s):  
Nima Alkhorshid ◽  
Gregório Araújo ◽  
Ennio Palmeira

The use of granular column is one of the ground improvement methods used for soft soils. This method improves the foundation soils mechanical properties by displacing the soft soil with the compacted granular columns. The columns have high permeability that can accelerate the excess pore water pressure produced in soft soils and increase the undrained shear strength. When it comes to very soft soils, the use of granular columns is not of interest since these soils present no significant confinement to the columns. Here comes the encased columns that receive the confinement from the encasement materials. In this study, the influence of the column installation method on the surrounding soil and the encasement effect on the granular column performance were investigated using numerical analyses and experimental tests. The results show that numerical simulations can reasonably predict the behavior of both the encased column and the surrounding soil.


2021 ◽  
Vol 240 ◽  
pp. 110006
Author(s):  
Lichen Li ◽  
Hao Liu ◽  
Wenbing Wu ◽  
Minjie Wen ◽  
M. Hesham El Naggar ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiang Xie ◽  
Xiaojia Lu ◽  
Jinan Wang ◽  
Liu Yang ◽  
Xiangang Han

Soldier pile support is an important tool for supporting deep foundation pits in the sand-gravel layer. However, since the sand-gravel layer itself is an aggregate of particles, its noncontinuity will cause extremely complex changes in the properties of the surrounding soils during pile supporting, and the changes in the mechanical properties of the soil behind the piles can also affect the safety and stability of the pit. To study the changing pattern of the surrounding soil in the course of pile supporting, we used the numerical method to simulate an excavation in the sand-gravel layer, followed by an analysis of the movement and stress distribution of the surrounding rocks. A photoelastic experiment was carried out to simulate the excavation process and study the force chain network of the surrounding soil as well as its changing characteristics. As shown by the results, (1) during the excavation of a deep foundation pit supported by soldier piles, on the same horizontal plane, the force chain changed most dramatically at the position that was 13.8 m (depth of the foundation pit) away from the edge of the foundation pit; (2) during the excavation, the force chain structure of the surrounding soil changed from vertical development to both vertical and horizontal developments; when there was a hard rock layer at the bottom of the soldier piles, the supporting effect of the piles was mainly provided by the hard rock layer; (3) the free face should be reinforced, and the excavation face should be adjusted based on the underground conditions of surrounding buildings (structures).


Sign in / Sign up

Export Citation Format

Share Document