scholarly journals Separation Method of Semi-Fixed Variables Together with Dynamical System Method for Solving Nonlinear Time-Fractional PDEs with Higher-Order Terms

Author(s):  
Weiguo Rui

Abstract It is well known that methods for solving fractional-order PDEs are grossly inadequate compared with integer-order PDEs. In this paper, a new approach which combined with the separation method of semi-fixed variables and dynamical system method is introduced. As example, a time-fractional reaction-diffusion equation with higher-order terms is studied under the different kinds of fractional-order differential operators. In different parametric regions, phase portraits of systems which derived from the reaction-diffusion equation are presented. Existence and dynamic properties of solutions of this nonlinear time-fractional models are investigated. In some special parametric conditions, some exact solutions of this time-fractional models are obtained. The dynamical properties of some exact solutions are discussed and the graphs of them are illustrated.PACS: 02.30.Jr; 02.30.Oz; 02.70.-c; 02.70.Mv; 02.90.+p; 04.20.Jb; 05.10.-a

2018 ◽  
Vol 11 (04) ◽  
pp. 1850051 ◽  
Author(s):  
Jin Hyuk Choi ◽  
Hyunsoo Kim

In this paper, we construct new exact solutions of the reaction–diffusion equation with time dependent variable coefficients by employing the mathematical computation via the Painlevé test. We describe the behaviors and their interactions of the obtained solutions under certain constraints and various variable coefficients.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yongjun Li ◽  
Xiaona Wei ◽  
Yanhong Zhang

First, for a processU(t,τ)∣t≥τ, we introduce a new concept, called the weakD-pullback exponential attractor, which is a family of setsM(t)∣t≤T, for anyT∈R, satisfying the following: (i)M(t)is compact, (ii)M(t)is positively invariant, that is,U(t,τ)M(τ)⊂M(t), and (iii) there existk,l>0such thatdist(U(t,τ)B(τ),M(t))≤ke-(t-τ); that is,M(t)pullback exponential attractsB(τ). Then we give a method to obtain the existence of weakD-pullback exponential attractors for a process. As an application, we obtain the existence of weakD-pullback exponential attractor for reaction diffusion equation inH01with exponential growth of the external force.


Meccanica ◽  
2020 ◽  
Author(s):  
P. Pandey ◽  
S. Das ◽  
E-M. Craciun ◽  
T. Sadowski

AbstractIn the present article, an efficient operational matrix based on the famous Laguerre polynomials is applied for the numerical solution of two-dimensional non-linear time fractional order reaction–diffusion equation. An operational matrix is constructed for fractional order differentiation and this operational matrix converts our proposed model into a system of non-linear algebraic equations through collocation which can be solved by using the Newton Iteration method. Assuming the surface layers are thermodynamically variant under some specified conditions, many insights and properties are deduced e.g., nonlocal diffusion equations and mass conservation of the binary species which are relevant to many engineering and physical problems. The salient features of present manuscript are finding the convergence analysis of the proposed scheme and also the validation and the exhibitions of effectiveness of the method using the order of convergence through the error analysis between the numerical solutions applying the proposed method and the analytical results for two existing problems. The prominent feature of the present article is the graphical presentations of the effect of reaction term on the behavior of solute profile of the considered model for different particular cases.


2019 ◽  
Vol 17 (1) ◽  
pp. 1411-1434
Author(s):  
Zongfei Han ◽  
Shengfan Zhou

Abstract We first introduce the concept of the random uniform exponential attractor for a jointly continuous non-autonomous random dynamical system (NRDS) and give a theorem on the existence of the random uniform exponential attractor for a jointly continuous NRDS. Then we study the existence of the random uniform exponential attractor for reaction-diffusion equation with quasi-periodic external force and multiplicative noise in ℝ3.


Sign in / Sign up

Export Citation Format

Share Document