scholarly journals Large Metallicity Variations in the Galactic Interstellar Medium

Author(s):  
Annalisa De Cia ◽  
Edward Jenkins ◽  
Cedric Ledoux ◽  
Andrew Fox ◽  
Tanita Ramburth-Hurt ◽  
...  

Abstract Metals in the neutral Interstellar Medium (ISM) of galaxies are crucial for the formation and evolution of galaxies, stars, cosmic dust, molecules, and planets. However, understanding the metal abundances in the neutral ISM is complicated by the presence of cosmic dust. Large quantities of metals are missing from the observable gas-phase because they are incorporated into dust grains. This phenomenon is called dust depletion. Until recently, the metallicity of the neutral ISM in the vicinity of the Sun was assumed to be Solar. In this paper we directly measure the metallicity of the neutral ISM, by quantifying dust depletion without making as- sumptions on the gas metallicity, using Hubble Space Telescope (HST) and Very Large Telescope (VLT) spectra of 25 hot bright stars. We find that the dust-corrected metal- licity in the neutral ISM in our Galaxy is not always Solar, but shows large variations spreading over a factor of 10 and including many regions of low metallicity, down to ∼ 17% Solar and possibly below. Pristine gas infalling towards the Galactic disk in the form of intermediate and high-velocity clouds could cause the observed chemical inhomogeneities on scales of tens of pc. This has a profound impact for the chemical evolution of galaxies.

1998 ◽  
Vol 11 (1) ◽  
pp. 86-89
Author(s):  
Ulysses J. Sofia

Abstract The well measured gas-phase abundances in the low halo suggest that this region of the Galaxy has total (gas plus dust) metal abundances which are close to those in the solar neighborhood. The gas-phase abundances in the halo are generally higher than those seen in the disk, however, this affect is likely due to the destruction of dust in the halo clouds. Observations of high velocity clouds (HVCs) in the halo suggest that these clouds have metal abundances which are substantially lower than those measured for the local interstellar medium. These determinations, however, are often of lower quality than those for the low halo because of uncertainties in the hydrogen abundances along the sightlines, in the incorporation of elements into dust, and in the partial ionization of the clouds.


2004 ◽  
Vol 194 ◽  
pp. 57-59 ◽  
Author(s):  
R. Soria ◽  
M. S. Cropper ◽  
M. W. Pakull

AbstractWe have studied the peculiar environment around a ULX in NGC 4559 (with Lx ≈ 2 x 1040 erg s–1 and MBH ≳ 50M⊙). The X-ray source is located near the rim of a young (age < 30 Myr), large (diameter ≈ 700 pc) ring-like star forming complex possibly triggered by the impact of a dwarf satellite galaxy through the gas-rich outer disk of NGC 4559. We speculate that galaxy interactions (including the infall of high-velocity clouds and satellites on a galactic disk) and low-metallicity environments offer favourable conditions for the formation of compact remnants more massive than “standard” X-ray binaries, and accreting from a massive Roche-lobe filling companion.


2009 ◽  
Vol 5 (H15) ◽  
pp. 286-286
Author(s):  
S. Konami ◽  
K. Matsushita ◽  
K. Sato ◽  
R. Nagino ◽  
N. Isobe ◽  
...  

Metal abundances of the hot X-ray emitting interstellar medium (ISM) include important information to understand the history of star formation and evolution of galaxies. The metals are mainly synthesized by Type Ia (SNe Ia) and stellar mass loss in elliptical galaxies. The productions of stellar mass loss reflect stellar metallicity. SNe Ia mainly product Fe. Therefore, the abundance pattern of ISM can play key role to investigate the metal enrichment history.


2019 ◽  
Vol 15 (S341) ◽  
pp. 309-311
Author(s):  
Kaho Sunaga ◽  
Yoichi Tamura ◽  
Minju Lee ◽  
Ken Mawatari ◽  
Akio K. Inoue ◽  
...  

AbstractWe present a 4.7σ detection of the [OIII] 88 μm line in a gravitationally-lensed Lyman break galaxy, RXC J2248-ID3, using the Atacama Large Millimeter/submillimeter Array (ALMA). We did not detect [CII] 158 μm and rest-frame 90 μm dust continuum emission, suggesting that the bulk of the interstellar medium (ISM) is ionized. Our two-component SED model combining the previous Hubble Space Telescope (HST) data and new photometry obtained from Very Large Telescope (VLT), Spitzer and ALMA suggests the presence of young (∼2 Myr) and mature (∼600 Myr) stellar components with the metallicity of Z = 0.2Z⊙. Our findings are in contrast with previous results claiming a very young, metal-poor stellar component.


2020 ◽  
Vol 496 (2) ◽  
pp. 1902-1908 ◽  
Author(s):  
Andrew P Allan ◽  
Jose H Groh ◽  
Andrea Mehner ◽  
Nathan Smith ◽  
Ioana Boian ◽  
...  

ABSTRACT We investigate a suspected very massive star in one of the most metal-poor dwarf galaxies, PHL 293B. Excitingly, we find the sudden disappearance of the stellar signatures from our 2019 spectra, in particular the broad H lines with P Cygni profiles that have been associated with a massive luminous blue variable (LBV) star. Such features are absent from our spectra obtained in 2019 with the Echelle Spectrograph for Rocky Exoplanet- and Stable Spectroscopic Observation and X-shooter instruments of the European Southern Observatory’s Very Large Telescope. We compute radiative transfer models using cmfgen, which fit the observed spectrum of the LBV and are consistent with ground-based and archival Hubble Space Telescope photometry. Our models show that during 2001–2011, the LBV had a luminosity L* = 2.5–3.5 × 106 L⊙, a mass-loss rate $\dot{M} = 0.005{-}0.020 ~{\rm M}_{\odot }$ yr−1, a wind velocity of 1000 km s−1, and effective and stellar temperatures of Teff = 6000–6800 and T* = 9500–15 000 K. These stellar properties indicate an eruptive state. We consider two main hypotheses for the absence of the broad emission components from the spectra obtained since 2011. One possibility is that we are seeing the end of an LBV eruption of a surviving star, with a mild drop in luminosity, a shift to hotter effective temperatures, and some dust obscuration. Alternatively, the LBV could have collapsed to a massive black hole without the production of a bright supernova.


2004 ◽  
Vol 217 ◽  
pp. 220-221
Author(s):  
L. Verdes-Montenegro ◽  
J. Sulentic ◽  
D. Espada ◽  
S. Leon ◽  
U. Lisenfeld ◽  
...  

We are constructing the first complete unbiased control sample of the most isolated galaxies of the northern sky to serve as a template in the study of star formation and galaxy evolution in denser environments. Our goal is to compare and quantify the properties of different phases of the interstellar medium in this sample, as well as the level of star formation, both relevant parameters in the internal evolution of galaxies and strongly conditioned by the environment. To achieve this goal we are building a multiwavelength database for this sample to compare and quantify the properties of different phases of the ISM.


1999 ◽  
Vol 16 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Michael Shull ◽  
Steven V. Penton ◽  
John T. Stocke

AbstractThe low-redshift Lyα forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our recent Hubble Space Telescope (HST) observations and interpretation of low-z Lyα clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Ωb. Our HST/GHRS detections of ∼ 70 Lyα absorbers with Nhi ≥ 1012·6 cm−2 along 11 sightlines covering pathlength Δ(cz) = 114,000 km s−1 show f (>Nhi) α Nhi−0·63±0·04 and a line frequency dN/dz = 200 ± 40 for Nhi > 1012·6 cm−2 (one every 1500 km s−1 of redshift). A group of strong absorbers toward PKS 2155–304 may be associated with gas (400–800) kpc from four large galaxies, with low metallicity (≤0·003 solar) and D/H ≤ 2 × 10−4. At low-z, we derive a metagalactic ionising radiation field from AGN of J0 = × 10−23 erg cm−2 s−1 Hz−1 sr−1 and a Lyα-forest baryon density Ωb =(0·008 ± 0·004)[J−23N14b100]½ for clouds of characteristic size b = (100 kpc)b100.


2013 ◽  
Vol 9 (S304) ◽  
pp. 419-420
Author(s):  
Gabriel A. Ohanian

AbstractKey questions, which arise when one tries to clear up a problem of formation and evolution of galaxies, is the question of energy: what is the energetic budget of AGN owing to form galaxies and provide its subsequent development? Hence, for understanding the formation and evolution of galaxies, it is important to estimate the energetic budget of AGN which we try to do involving radio loud phase of nuclear activity.


Sign in / Sign up

Export Citation Format

Share Document