scholarly journals Preventing Nugget Shifting in Joining of Dissimilar Steels via Resistance Element Welding: A Numerical Simulation.

Author(s):  
Zhenghua Rao ◽  
Lei Liu ◽  
Yaqiong Wang ◽  
Liang Ou ◽  
Jiangwei Liu

Abstract Joining the advanced high strength steels and the conventional steels is a critical issue for the manufacturing of lightweight vehicles. Resistance element welding (REW) is an emerging joining method for dissimilar metals and alloys by applying an auxiliary rivet-like resistance element in resistance spot welding (RSW). In this study, an electrical-thermal-mechanical coupled REW model for high-strength dual-phase (DP) steel and Q235 steel was developed by considering contact resistances as functions of temperature and surface contacting area. The results show that the welding element in REW serves to concentrate the current flow and thus Joule heat generation at the faying interface between the element and workpiece. For welding DP600 and Q235 workpieces with a small thickness ratio (≤0.4) or a high electrical resistivity ratio (≥3), REW could effectively mitigate nugget shifting between workpieces and reducing the thermal excursion to electrode as compared to RSW. Adding well-designed insulation layers in REW could further concentrate the current within the welding element, and enables a large-sized nugget at a lower current. This study is significant because it provides a better understanding to the electrical-thermal-mechanical behaviors with interfacial contacts in REW and contributes to its further advance.

2016 ◽  
Vol 850 ◽  
pp. 197-201
Author(s):  
Chao Zhi ◽  
Yi Fei Gong ◽  
Ai Min Zhao ◽  
Jian Guo He ◽  
Ran Ding

The wear performance and wear mechanism under two-body abrasion of five advanced high strength steels, i.e. Nanobainite (NB) steel, Tempered Martensitic (TM) steel, Dual Phase (DP) steel, Transformation Induced Plasticity (TRIP) Steel and Twining Induced Plasticity (TWIP) steel were studied. By using the scanning electron microscopy (SEM), we investigated the wearing surface. Phase transformation strengthening behavior was also be discussed by analyzing the surface and sub-surface after abrasion. The results showed that micro-cutting was the major role of wear mode in the condition of two-body abrasion. In the circumstance of two-body abrasion, hardness was an important factor, the property of wear resistance enhanced while the hardness increased except for TM steel. NB steel possessed the best wear resistance which was 1.71 times higher than that of TWIP steel. The retained austenite transformed into martensite which can improve the hardness so that it enhanced the wear resistance of NB steel.


2010 ◽  
Vol 41 (11) ◽  
pp. 931-939 ◽  
Author(s):  
G. Weber ◽  
H. Thommes ◽  
H. Gaul ◽  
O. Hahn ◽  
M. Rethmeier

Sign in / Sign up

Export Citation Format

Share Document