Whole-body Vibration Attenuates Pyroptosis-Mediated Inflammation but Accelerates Progression of Intervertebral Disc Degeneration

2020 ◽  
Author(s):  
Fang-da Fu ◽  
Sai Yao ◽  
Zhi-tao Sun ◽  
Cheng-cong Zhou ◽  
Huan Yu ◽  
...  

Abstract Background Whole body vibration (WBV) is a non-pharmaceutical therapy that has been widely incorporated into clinical practice for musculoskeletal disorders, including low back pain (LBP). Intervertebral disc (IVD) degeneration (IVDD) is clinically associated with LBP and is known as the main cause for LBP. However, cumulative evidence also suggested WBV might have an adverse impact on IVDs. Moreover, previous studies have been focusing on the effects of WBV on healthy mice, rather than those suffering from IVDD. Thus, uncertainties still exist concerning the effects of WBV on IVDs undergoing IVDD. This study was aiming to evaluate the effects of WBV intervention on the development and progression of IVDD mouse model induced by lumbar spine instability (LSI) surgery. Methods LSI surgery, by resecting the lumbar 3 rd -5 th spinous processes along with the supraspinous and interspinous ligaments, was conducted in 10-week-old male mice which then received WBV treatment (1 h per day, 5 days per week, at 3 Hz with peak acceleration at 0.4 g) or sham treatment. The progression of IVDD was evaluated by MRI, μCT and histological analyses after WBV treatment. The matrix metabolism, distribution of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological analysis or real-time PCR. The apoptosis of IVD cells was detected by TUNEL assay. Results LSI surgery was successful in producing IVDD modeling. WBV caused decreases in IVD height and annulus fibrosus (AF) score, as well as increased numbers of apoptotic cells in IVD tissues. WBV contributed to sensory innervation into AF and upregulation of Adamts5 and MMP3 expression in IVDD mice received LSI surgery. In addition, WBV treatment triggered earlier activation of Wnt/β-catenin signaling in IVDD mice with WBV treatment compared with those without WBV treatment. Unexpectedly, WBV significantly attenuated Caspase-1 and IL-1β expression in AF. Conclusions Collectively, our findings demonstrate that WBV treatment may worsen the development of ongoing IVDD. Decrease of IL-1β expression after WBV intervention may partially account for patient self-reported pain relief after WBV treatment in some previous trials. This study may help us better understand the effects of WBV intervention on patients experiencing LBP resulting from the degeneration of lumbar IVDs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fangda Fu ◽  
Ronghua Bao ◽  
Sai Yao ◽  
Chengcong Zhou ◽  
Huan Luo ◽  
...  

AbstractAberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Chencheng Feng ◽  
Minghui Yang ◽  
Minghong Lan ◽  
Chang Liu ◽  
Yang Zhang ◽  
...  

Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.


Sign in / Sign up

Export Citation Format

Share Document