matrix metabolism
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Guoshuai Cao ◽  
Sidong Yang ◽  
Jianye Cao ◽  
Zixuan Tan ◽  
Linyu Wu ◽  
...  

Intervertebral disc degeneration is a very common type of degenerative disease causing severe socioeconomic impact, as well as a major cause of discogenic low back pain and herniated discs, placing a heavy burden on patients and the clinicians who treat them. IDD is known to be associating with a complex process involving in extracellular matrix and cellular damage, and in recent years, there is increasing evidence that oxidative stress is an important activation mechanism of IDD and that reactive oxygen and reactive nitrogen species regulate matrix metabolism, proinflammatory phenotype, autophagy and senescence in intervertebral disc cells, apoptosis, autophagy, and senescence. Despite the tremendous efforts of researchers within the field of IDD pathogenesis, the proven strategies to prevent and treat this disease are still very limited. Up to now, several antioxidants have been proved to be effective for alleviating IDD. In this article, we discussed that oxidative stress accelerates disc degeneration by influencing aging, inflammation, autophagy, and DNA methylation, and summarize some antioxidant therapeutic measures for IDD, indicating that antioxidant therapy for disc degeneration holds excellent promise.


Small Methods ◽  
2022 ◽  
pp. 2101201
Author(s):  
Hongze Chang ◽  
Feng Cai ◽  
Yan Zhang ◽  
Mingwei Jiang ◽  
Xiaolong Yang ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Taiqiu Chen ◽  
Pengfei Li ◽  
Jincheng Qiu ◽  
Wenjun Hu ◽  
Shaoguang Li ◽  
...  

Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.


2022 ◽  
Author(s):  
Yu Dai ◽  
Can Jian ◽  
Xiaofeng Wang ◽  
Xiaoxia Dai

Kashin-Beck disease (KBD) is a chronic, endemic and deforming osteochondropathy, whose basic pathological alterations include apoptosis and necrosis of chondrocytes in articular cartilage and growth plates and imbalanced extracellular matrix metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Duan ◽  
Xiao Xu ◽  
Limei Xu ◽  
Caining Wen ◽  
Kan Ouyang ◽  
...  

Proteolytic targeting chimeras (PROTACs) is a rapid and reversible chemical knockout method. Compared with traditional gene-editing tools, it can avoid potential genetic compensation, misunderstandings caused by spontaneous mutations, or gene knockouts that lead to embryonic death. To study the role of estrogen receptor alpha (ERα) in the occurrence and progression of menopausal arthritis, we report a chemical knockout strategy in which stable peptide-based (PROTACs) against ERα to inhibit their function. This chemical knockdown strategy can effectively and quickly inhibit ERα protein in vivo and in vitro. In the rat menopausal arthritis model, this study showed that inhibiting estrogen function by degrading ERα can significantly interfere with cartilage matrix metabolism and cause menopausal arthritis by up-regulating matrix metalloproteinase (MMP-13). The results of this study indicate that ERα is a crucial estrogen receptor for maintaining cartilage metabolism. Inhibition of ERα function by PROTACs can promote the progression of osteoarthritis.


2021 ◽  
pp. 112070002110446
Author(s):  
Yoshi Kawamura ◽  
Tomonori Tetsunaga ◽  
Kazuki Yamada ◽  
Tomoaki Sanki ◽  
Yoshihiro Sato ◽  
...  

Purpose: The acetabular labrum plays an important role in joint lubrication, and damage to this structure leads to osteoarthritis. This study aimed to histologically classify the degree of degeneration of the acetabular labrum and to investigate the changes in gene expression induced by mechanical stretching. Methods: We obtained acetabular labrum cells from patients with hip osteoarthritis during total hip arthroplasty ( n = 25). The labrum was stained with safranin O, and images were histologically evaluated using a new parameter, the red/blue (R/B) value. The samples were divided into the degenerated group (D group: n = 18) and the healthy group (H group: n = 7) in accordance with the Kellgren-Lawrence (KL) grade. The cultured acetabular labral cells were subjected to loaded uniaxial cyclic tensile strain (CTS). After CTS, changes in gene expression were examined in both groups. Results: Spearman’s correlation analysis revealed that the R/B value was significantly correlated with the KL grade and the Krenn score. The expression levels of genes related to cartilage metabolism, osteogenesis and angiogenesis significantly increased after CTS in the H group, while gene expression in the D group showed weaker changes after CTS than that in the H group compared to the nonstretched control group. Conclusions: The degree of labral degeneration could be classified histologically using the R/B value and the KL grade. Mechanical stretching caused changes in gene expression that support the pathological features of labral degeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Hai-Wei Chen ◽  
Guang-Zhi Zhang ◽  
Ming-Qiang Liu ◽  
Li-Juan Zhang ◽  
Ji-He Kang ◽  
...  

Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yiyang Wang ◽  
Yanzhu Hu ◽  
Haoming Wang ◽  
Ningyuan Liu ◽  
Lei Luo ◽  
...  

Established studies proved that mechanical compression loading had multiple effects on the biological behavior of the intervertebral disc (IVD). However, the regulating mechanism involved in this process remains unclear. The current study is aimed at exploring the potential bioregulators and signaling pathways involved in the compression-associated biological changes of nucleus pulposus (NP) cells. Tandem mass tag- (TMT-) based quantitative proteomics was exerted to analyze the differentially expressed proteins (DEPs) and signal pathways among the different groups of NP cells cultured under noncompression, low-compression (LC), and high-compression (HC) loading. Eight potential protective bioregulators for the NP cell survival under different compression loading were predicted by the proteomics, among which macrophage migration inhibitory factor (MIF) and oxidative stress-related pathways were selected for further evaluation, due to its similar function in regulating the fate of the cartilage endplate- (CEP-) derived cells. We found that deficiency of MIF accentuates the accumulation of ROS, mitochondrial dysfunction, and senescence of NP cells under overloaded mechanical compression. The potential molecular mechanism involved in this process is related to the mitophagy regulating role of MIF. Our findings provide a better understanding of the regulatory role of mechanical compression on the cellular fate commitment and matrix metabolism of NP, and the potential strategies for treating disc degenerative diseases via using MIF-regulating agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yiyang Wang ◽  
Baoshuai Bai ◽  
Yanzhu Hu ◽  
Haoming Wang ◽  
Ningyuan Liu ◽  
...  

Established studies proved that hydrostatic pressure had multiple effects on the biological behavior of the intervertebral disc (IVD). However, the conclusions of the previous studies were inconsistent, due to the difference in hydrostatic loading devices and observing methods used in these studies. The current study is aimed at investigating the role of dynamic hydrostatic pressure in regulating biological behavior of the notochordal nucleus pulposus (NP) and fibrocartilaginous inner annulus fibrosus (AF) and its possible mechanism using our novel self-developed hydrostatic pressure bioreactor. The differences in the biological behavior of the rabbit IVD tissues under different degree of hydrostatic pressure were evaluated via histological analysis. Results revealed that low-loading dynamic hydrostatic pressure was beneficial for cell survival and extracellular matrix (ECM) homeostasis in notochordal NP and fibrocartilaginous inner AF via upregulating N-cadherin (N-CDH) and integrin β1. In comparison, high-magnitude dynamic hydrostatic pressure aggravated the breakdown of ECM homeostasis in NP and inner AF via enhancing the Hippo-YAP/TAZ pathway-mediated cell apoptosis. Moreover, inner AF exhibited greater tolerance to physiological medium-loading degree of hydrostatic pressure than notochordal NP. The potential mechanism was related to the differential expression of mechanosensing factors in notochordal NP and fibrocartilaginous inner AF, which affects the fate of the cells under hydrostatic pressure. Our findings may provide a better understanding of the regulatory role of hydrostatic pressure on the cellular fate commitment and matrix metabolism of the IVD and more substantial evidence for using hydrostatic pressure bioreactor in exploring the IVD degeneration mechanism as well as regeneration strategies.


Sign in / Sign up

Export Citation Format

Share Document