scholarly journals Arabidopsis ribosomal proteins RPL23aA and RPL23aB are functionally equivalent

2020 ◽  
Author(s):  
Wei Xiong ◽  
Xiangze Chen ◽  
Chengxin Zhu ◽  
Jiancong Zhang ◽  
Ting Lan ◽  
...  

Abstract Background: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogues genes (RPL23aA and RPL23aB ) found in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. Results: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both of RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. Conclusions: Our findings suggest that RPL23aA and RPL23aB proteins actually have equal function and presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.

2020 ◽  
Author(s):  
Wei Xiong ◽  
Xiangze Chen ◽  
Chengxin Zhu ◽  
Jiancong Zhang ◽  
Ting Lan ◽  
...  

Abstract Background: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogues genes ( RPL23aA and RPL23aB ) found in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. Results: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB . A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both of RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa , indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. Conclusions: Our findings suggest that RPL23aA and RPL23aB proteins actually have equal function and presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Xiong ◽  
Xiangze Chen ◽  
Chengxin Zhu ◽  
Jiancong Zhang ◽  
Ting Lan ◽  
...  

Abstract Background In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. Results In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. Conclusions Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


2020 ◽  
Author(s):  
Wei Xiong ◽  
Xiangze Chen ◽  
Chengxin Zhu ◽  
Jiancong Zhang ◽  
Ting Lan ◽  
...  

Abstract Background: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB ) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. Results: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. Conclusions: Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


2020 ◽  
Author(s):  
Wei Xiong ◽  
Xiangze Chen ◽  
Chengxin Zhu ◽  
Jiancong Zhang ◽  
Ting Lan ◽  
...  

Abstract Background: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB ) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. Results: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. Conclusions: Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


1992 ◽  
Vol 12 (1) ◽  
pp. 56-67
Author(s):  
D A Maslov ◽  
N R Sturm ◽  
B M Niner ◽  
E S Gruszynski ◽  
M Peris ◽  
...  

Six short G-rich intergenic regions in the maxicircle of Leishmania tarentolae are conserved in location and polarity in two other kinetoplastid species. We show here that G-rich region 6 (G6) represents a pan-edited cryptogene which contains at least two domains edited independently in a 3'-to-5' manner connected by short unedited regions. In the completely edited RNA, 117 uridines are added at 49 sites and 32 uridines are deleted at 13 sites, creating a translated 85-amino-acid polypeptide. Similar polypeptides are probably encoded by pan-edited G6 transcripts in two other species. The G6 polypeptide has significant sequence similarity to the family of S12 ribosomal proteins. A minicircle-encoded gRNA overlaps 12 editing sites in G6 mRNA, and chimeric gRNA/mRNA molecules were shown to exist, in agreement with the transesterification model for editing.


1992 ◽  
Vol 12 (1) ◽  
pp. 56-67 ◽  
Author(s):  
D A Maslov ◽  
N R Sturm ◽  
B M Niner ◽  
E S Gruszynski ◽  
M Peris ◽  
...  

Six short G-rich intergenic regions in the maxicircle of Leishmania tarentolae are conserved in location and polarity in two other kinetoplastid species. We show here that G-rich region 6 (G6) represents a pan-edited cryptogene which contains at least two domains edited independently in a 3'-to-5' manner connected by short unedited regions. In the completely edited RNA, 117 uridines are added at 49 sites and 32 uridines are deleted at 13 sites, creating a translated 85-amino-acid polypeptide. Similar polypeptides are probably encoded by pan-edited G6 transcripts in two other species. The G6 polypeptide has significant sequence similarity to the family of S12 ribosomal proteins. A minicircle-encoded gRNA overlaps 12 editing sites in G6 mRNA, and chimeric gRNA/mRNA molecules were shown to exist, in agreement with the transesterification model for editing.


Author(s):  
Suman Lata ◽  
Anshul Watts ◽  
S. R. Bhat

In Arabidopsis, most of the genes encoding mitochondrial ribosomal proteins are located in the nucleus and only seven are present in the mitochondrial genome. Assembly of a functional ribosome requires coordinated expression of ribosomal protein encoding genes located in both these organelles. Genes and promoters of nuclear encoded mitochondrial ribosomal protein coding genes of plants have not been well characterized so far. In the present study we have characterized Arabidopsis thaliana SALK mutant lines with T-DNA insertion in Rps14 or Rps19 gene. The location of T-DNA insertion in the mutant lines was confirmed and plants homozygous and hemizygous for TDNA insertion were identified for both Rps14 and Rps19 genes. In homozygous T-DNA mutant lines of both Rps14 and Rps19 genes, the expression was estimated using RTPCR. Rps14 and Rps19 transcripts similar to wild type were present in homozygous mutant plants of Rps14 and Rps19 which indicated that T-DNA insertion has not affected their expression.


Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 55 ◽  
Author(s):  
Dowan Kim ◽  
Myunghee Jung ◽  
In Ha ◽  
Min Lee ◽  
Seok-Geun Lee ◽  
...  

Poppies are well-known plants in the family Papaveraceae that are rich in alkaloids. This family contains 61 species, and in this study we sequenced the transcriptomes of four species’ (Papaver rhoeas, Papaver nudicaule, Papaver fauriei, and Papaver somniferum) leaves. These transcripts were systematically assessed for the expression of secondary metabolite biosynthesis (SMB) genes and cytochromes, and their expression profiles were assessed for use in bioinformatics analyses. This study contributed 265 Gb (13 libraries with three biological replicates) of leaf transcriptome data from three Papaver plant developmental stages. Sequenced transcripts were assembled into 815 Mb of contigs, including 226 Mb of full-length transcripts. The transcripts for 53 KEGG pathways, 55 cytochrome superfamilies, and benzylisoquinoline alkaloid biosynthesis (BIA) were identified and compared to four other alkaloid-rich genomes. Additionally, 22 different alkaloids and their relative expression profiles in three developmental stages of Papaver species were assessed by targeted metabolomics using LC-QTOF-MS/MS. Collectively, the results are given in co-occurrence heat-maps to help researchers obtain an overview of the transcripts and their differential expression in the Papaver development life cycle, particularly in leaves. Moreover, this dataset will be a valuable resource to derive hypotheses to mitigate an array of Papaver developmental and secondary metabolite biosynthesis issues in the future.


1987 ◽  
Vol 368 (2) ◽  
pp. 921-926 ◽  
Author(s):  
Jan DIJK ◽  
Rudolf VAN DEN BROEK ◽  
Georgios NASIULAS ◽  
Alfred BECK ◽  
Richard REINHARDT ◽  
...  

1972 ◽  
Vol 130 (1) ◽  
pp. 103-110 ◽  
Author(s):  
L. P. Visentin ◽  
C. Chow ◽  
A. T. Matheson ◽  
M. Yaguchi ◽  
F. Rollin

1. The 30S ribosomal subunit of the extreme halophile Halobacterium cutirubrum is unstable and loses 75% of its ribosomal protein when the 70S ribosome is dissociated into the two subunits. A stable 30S subunit is obtained if the dissociation of the 70S particle is carried out in the presence of the soluble fraction. 2. A fractionation procedure was developed for the selective removal of groups of proteins from the 30S and 50S subunits. When the ribosomes, which are stable in 4m-K+ and 0.1m-Mg2+, were extracted with low-ionic-strength buffer 75–80% of the 30S proteins and 60–65% of the 50S proteins as well as the 5S rRNA were released. The proteins in this fraction are the most acidic of the H. cutirubrum ribosomal proteins. Further extraction with Li+–EDTA releases additional protein, leaving a core particle containing either 16S rRNA or 23S rRNA and about 5% of the total ribosomal protein. The amino acid composition, mobility on polyacrylamide gels at pH4.5 and 8.7, and the molecular-weight distribution of the various protein fractions were determined. 3. The s values of the rRNA are 5S, 16S and 23S. The C+G contents of the 16S and 23S rRNA were 56.1 and 58.8% respectively and these are higher than C+G contents of the corresponding Escherichia coli rRNA (53.8 and 54.1%).


Sign in / Sign up

Export Citation Format

Share Document