scholarly journals A Novel Trajectory Tracking Control Strategy for Underactuated Quadrotor UAV with Uncertainties and Disturbances

2020 ◽  
Author(s):  
Jiang Han ◽  
Siyang Yang ◽  
Lian Xia ◽  
Ye-Hwa Chen

Abstract In this research, a novel position trajectory tracking control architecture has been constructed for an underactuated quadrotor unmanned aerial vehicle (UAV) with uncertainties and disturbances. Primarily, we divide the whole dynamic system into an underactuated position subsystem and a fully-actuated attitude subsystem. For the position subsystem, we have transformed it into a fully-actuated system by constructing a virtual PD controller, and this controller can render the position tracking error asymptotically stable. Besides, based on the position controller designed for quadrotor UAV, the desired attitudes, i.e. roll, pitch and yaw angles, will be derived. Next, as for the attitude subsystem which is sensitive to uncertainties and external disturbances, a novel robust attitude constraint-following controller is proposed for this aircraft, this attitude controller can not only guarantee the uniform boundedness and uniform ultimate boundedness of constraint deviation, but also does not requiring more information of uncertainties and disturbances except their bounds. Eventually, the simulations have demonstrated a sound tracking performance of our proposed control strategy for quadrotor UAV even in the presence of uncertainties and disturbances.

2020 ◽  
Vol 42 (15) ◽  
pp. 2956-2968
Author(s):  
Bo Li ◽  
Hanyu Ban ◽  
Wenquan Gong ◽  
Bing Xiao

This work presents a novel control strategy for the trajectory tracking control of the quadrotor unmanned aerial vehicle (UAV) with parameter uncertainties and external unknown disturbances. As a stepping stone, two fixed-time extended state observers (ESOs) are proposed to estimate the external disturbances and/or the parameter uncertainties for the position and attitude subsystems, respectively. Then, the fast terminal sliding mode-based improved dynamic surface control (DSC) approaches are developed. To eliminate the problem of “explosion of complexity” inherent in backstepping method-based controllers, the finite-time command filters and an error compensation signals are used in the design of the dynamic surface controllers. Subsequently, the practically finite-time stability of the closed-loop tracking system is guaranteed by utilizing the proposed control scheme. The simulation results are obtained to demonstrate the effectiveness and fine performance of the proposed trajectory tracking control approaches.


2017 ◽  
Vol 67 (3) ◽  
pp. 245 ◽  
Author(s):  
Sudhir Nadda ◽  
A. Swarup

The model of a quadrotor unmanned aerial vehicle (UAV) is nonlinear and dynamically unstable. A flight controller design is proposed on the basis of Lyapunov stability theory which guarantees that all the states remain and reach on the sliding surfaces. The control strategy uses sliding mode with a backstepping control to perform the position and attitude tracking control. This proposed controller is simple and effectively enhance the performance of quadrotor UAV. In order to demonstrate the robustness of the proposed control method, White Gaussian Noise and aerodynamic moment disturbances are taken into account. The performance of the nonlinear control method is evaluated by comparing the performance with developed linear quadratic regulator and existing backstepping control technique and proportional-integral-derivative from the literature. The comparative performance results demonstrate the superiority and effectiveness of the proposed control strategy for the quadrotor UAV.


2011 ◽  
Vol 467-469 ◽  
pp. 1421-1426
Author(s):  
Zhi Cheng Hou ◽  
X. Gong ◽  
Y. Bai ◽  
Y.T. Tian ◽  
Q. Sun

This paper deals with the under-actuated characteristic of a quad-rotor unmanned aerial vehicle (UAV). By designing the double loop configuration, the autonomous trajectory tracking is realized. The model uncertainty, external disturbance and the senor noise are also taken into consideration. Then the controller is put forward in the inner loop. An optimal stability augmentation control (SAC) method is used to stabilize the horizon position and keep it away from oscillation. By calculating the nonlinear decouple map, control quantity is converted to the speeds of the four rotors. At last some simulation results and the prototype implementation prove that the control method is effective.


Sign in / Sign up

Export Citation Format

Share Document