scholarly journals Synthesis and Characterization of Chitosan/Agar/SiO2 Nano Hydrogels For Removal of Amoxicillin and of Naproxen From Pharmaceutical Contaminants

Author(s):  
Omid Moradi ◽  
Samira Mhdavi ◽  
Sajjad Sedaghat

Abstract Today, environmental pollutants pose a threat to human societies and all living organisms, which is why they have attracted the attention of environmental researchers. In this study, in order to remove pharmaceutical contaminants Naproxen and Amoxicillin from aqueous media with SiO2 nanoparticles based on Agar and Chitosan was investigated. The study of structural properties, physical and chemical characterization of synthesized nanocomposite was investigated by FTIR, XRD, TEM, FE-SEM, DLS and EDX analyzes. In addition, the role of parameters affecting the removal of pharmaceutical contaminants such as solution pH, contact time, contaminant concentration and temperature were studied. Nanocomposites prepared from Agar and Chitosan showed good performance in absorbing naproxen and amoxicillin. According to the studies performed to remove naproxen, the max adsorption efficiency was obtained at a concentration of 20 mg/l with an absorbent dose of 0.05 g and a pH of 8 and at an optimum temperature of 25 °C and 99% in 15 min. Also, for amoxicillin with nanocomposite prepared with an initial concentration of 20 mg/l and an adsorbent dose of 0.05 g, a time of 10 min, a temperature of 25 °C and a pH of 8, the max removal efficiency of 91.15% was obtained.

1969 ◽  
Vol 244 (15) ◽  
pp. 4128-4135
Author(s):  
R T Acton ◽  
J C Bennett ◽  
E E Evans ◽  
R E Schrohenloher

2007 ◽  
Vol 4 (sup1) ◽  
pp. 209-216 ◽  
Author(s):  
Robert F. Herrick ◽  
Michael D. McClean ◽  
John D. Meeker ◽  
Leonard Zwack ◽  
Kevin Hanley

2018 ◽  
Author(s):  
Danar Praseptiangga ◽  
Anisha Ayuning Tryas ◽  
Dian Rachmawanti Affandi ◽  
Windi Atmaka ◽  
Achmad Ridwan Ariyantoro ◽  
...  

Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 443-451 ◽  
Author(s):  
B. A. Medeiros ◽  
G. A. Neves ◽  
N. P. Barbosa ◽  
R. R. Menezes ◽  
H. C. Ferreira

Abstract The residue generated by industrial activities represents a cost, since the generators are responsible for its management, transportation, treatment and disposal. Rio Grande do Norte State in Brazil is the greatest producer of scheelite residue. The aim of this research was to characterize this mining residue, identify its similarity with natural sand and produce a coating mortar with it. In the composition of mortar, a Brazilian Portland cement type CPII-F32 and an industrialized calcium hydroxide as a binder were used. Laser granulometry, bulk and relative density, EDX, XRD and thermal analysis were done to obtain a physical and chemical characterization of the residue. Mechanical tests (tensile bond strength and compressive strength), SEM and water absorption test were done to analyze the behavior of mortar. All tests confirmed that mechanical properties were according to standards for tile mortar.


Sign in / Sign up

Export Citation Format

Share Document