scholarly journals Non-inertial effects on generalized KG-oscillator in the presence of Coulomb-type potential in topological defects geometry

Author(s):  
Faizuddin Ahmed

Abstract In this work, we solve a generalized KG-oscillator subject to a scalar and vector potential of Coulomb-types under the effects of a uniform rotation in cosmic string space-time. We obtain the energy eigenvalue and eigenfunction, and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states. We see that the presence of potential allow the formation of bound states solution and the energy level and wave-function for each radial mode depend on the global parameters of the space-time.

Author(s):  
Faizuddin Ahmed

We solve a generalized Klein-Gordon oscillator (KGO) in the presence of a uniform magnetic field including quantum flux under the effects of a scalar and vector potentials of Coulomb-types in the static cosmic string space-time. We obtain the energy and corresponding eigenfunctions, and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states.


Author(s):  
K. Bakke

We analyze the influence of a cutoff point on a Coulomb-type potential that stems from the interaction of an electron with electric fields. This cutoff point establishes a forbidden region for the electron. Then, we search for bound state solutions to the Schrödinger equation. In addition, we consider a rotating reference frame. We show that the effects of rotation break the degeneracy of the energy levels. Further, we discuss the Aharonov–Bohm effect for bound states.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Faizuddin Ahmed

In this paper, we study interactions of a scalar particle with electromagnetic potential in the background space-time generated by a cosmic string with a space-like dislocation. We solve the Klein-Gordon oscillator in the presence of external fields including an internal magnetic flux field and analyze the analogue effect to the Aharonov-Bohm effect for bound states. We extend this analysis subject to a Cornell-type scalar potential and observe the effects on the relativistic energy eigenvalue and eigenfunction.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050138
Author(s):  
Faizuddin Ahmed

Klein–Gordon oscillator in the background space-time generated by a rotating cosmic string subject to a Cornell-type scalar and Coulomb-type vector potentials including an internal magnetic flux is studied. We obtain the relativistic energy eigenvalues and the corresponding eigenfunctions and analyze a relativistic analogue of the Aharonov–Bohm effect for bound states.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050101
Author(s):  
Faizuddin Ahmed

In this paper, we study the relativistic quantum dynamics of spin-0 scalar charged particles with a magnetic quantum flux produced by topological defects in a rotating cosmic string space–time. We solve the Klein–Gordon equation subject to Coulomb-type scalar and vector potentials in the considered framework and obtain the energy eigenvalues and eigenfunctions and analyze the analogue effect to Aharonov–Bohm effect for bound states.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
E. V. B. Leite ◽  
H. Belich ◽  
K. Bakke

Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.


Author(s):  
Faizuddin Ahmed

The non-inertial effects on spin-0 scalar particle that interacts with scalar potentials of Cornell-type in cylindrical system and Coulomb-type in the magnetic cosmic string space-time using Kaluza-Klein theory is analyzed. We show that the energy eigenvalue and eigenfunction depend on the global parameters characterizing the space-time, and the gravitational analogue of the Aharonov-Bohm effect for bound states is observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Faizuddin Ahmed

In this paper, we solve a generalized Klein-Gordon oscillator in the cosmic string space-time with a scalar potential of Cornell-type within the Kaluza-Klein theory and obtain the relativistic energy eigenvalues and eigenfunctions. We extend this analysis by replacing the Cornell-type with Coulomb-type potential in the magnetic cosmic string space-time and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states.


Sign in / Sign up

Export Citation Format

Share Document