scholarly journals Investigating host and parasite factors surrounding seasonal malaria chemoprevention in Bama, Burkina Faso

2020 ◽  
Author(s):  
Anyirékun Somé ◽  
Thomas Bazié ◽  
Ehrlich Hanna Y. ◽  
Justin Goodwin ◽  
Aine Lehane ◽  
...  

Abstract Background: Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine-sulfadoxine-pyrimethamine (AQ-SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. We report in this paper the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under five years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC. Methods: Two sequential cross-sectional surveys were carried out in the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 and 93 children under five, respectively, at the start of SMC and again three weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethyl-amodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility. Results: 2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p=0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95%CI=10.0-24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3. Conclusion: This study showed a moderate prevalence of low-level malaria parasitemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. Our findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.

2020 ◽  
Author(s):  
Anyirékun Somé ◽  
Thomas Bazié ◽  
Ehrlich Hanna Y. ◽  
Justin Goodwin ◽  
Aine Lehane ◽  
...  

Abstract Background: Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine-sulfadoxine-pyrimethamine (AQ-SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. We report in this paper the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under five years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC. Methods: Two sequential cross-sectional surveys were conducted in late July and August 2017 during the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 and 93 children under five, respectively, at the start of SMC and again three weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethyl-amodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility. Results: 2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p=0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95%CI=10.0-24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3. Conclusion: This study showed a moderate prevalence of low-level malaria parasitemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. Our findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.


2020 ◽  
Author(s):  
Anyirékun Somé ◽  
Thomas Bazié ◽  
Ehrlich Hanna Y. ◽  
Justin Goodwin ◽  
Aine Lehane ◽  
...  

Abstract Background: Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine-sulfadoxine-pyrimethamine (AQ-SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. This paper reports the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under five years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC. Methods: Two sequential cross-sectional surveys were conducted in late July and August 2017 during the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 and 93 children under five, respectively, at the start of SMC and again three weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethylamodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility. Results: 2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p=0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95%CI=10.0-24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3. Conclusion: This study showed a moderate prevalence of low-level malaria parasitaemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. These findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.


Author(s):  
Erin M. Milner ◽  
Patricia Kariger ◽  
Amy J. Pickering ◽  
Christine P. Stewart ◽  
Kendra Byrd ◽  
...  

Malaria is a leading cause of morbidity and mortality among children under five years of age, with most cases occurring in Sub-Saharan Africa. Children in this age group in Africa are at greatest risk worldwide for developmental deficits. There are research gaps in quantifying the risks of mild malaria cases, understanding the pathways linking malaria infection and poor child development, and evaluating the impact of malaria on the development of children under five years. We analyzed the association between malaria infection and gross motor, communication, and personal social development in 592 children age 24 months in rural, western Kenya as part of the WASH Benefits environmental enteric dysfunction sub-study. Eighteen percent of children had malaria, 20% were at risk for gross motor delay, 21% were at risk for communication delay, and 23% were at risk for personal social delay. Having a positive malaria test was associated with increased risk for gross motor, communication, and personal social delay while adjusting for child characteristics, household demographics, study cluster, and intervention treatment arm. Mediation analyses suggested that anemia was a significant mediator in the pathway between malaria infection and risk for gross motor, communication, and personal social development delays. The proportion of the total effect of malaria on the risk of developmental delay that is mediated by anemia across the subscales was small (ranging from 9% of the effect on gross motor development to 16% of the effect on communication development mediated by anemia). Overall, malaria may be associated with short-term developmental delays during a vulnerable period of early life. Therefore, preventative malaria measures and immediate treatment are imperative for children’s optimal development, particularly in light of projections of continued high malaria transmission in Kenya and Africa.


2009 ◽  
Vol 3 (5) ◽  
pp. 1203-1206 ◽  
Author(s):  
Ramakrishnan Lakshmy ◽  
Ruby Gupta

Background: Glycated hemoglobin A1c (A1C) is an important marker in the diagnosis and treatment of diabetes. Dried blood measurement of A1C is useful in large scale epidemiological evaluation of A1C, especially to assess the impact of intervention programs. The possibility of using dried blood for measurement of A1C by the immunoturbidimetric method was explored in the present study. Method: Blood was collected from 30 patients, and blood spots were prepared and dried. The dried blood spot samples were kept for different lengths of time at 4°C to assess stability. Glycated hemoglobin was measured in whole blood and dried blood on the day of collection as well as on days 10 and 15 by immunoturbidimetric method. Results: The A1C values of 30 samples analyzed for comparison between whole blood estimation and dried blood ranged from 4.6% to 9.9%. The mean A1C on the day of sample collection was 6.01% ± 1.58% in fresh whole blood samples and 5.94% ± 1.58 % in dried blood spots. A linear and highly correlated relationship was observed between dried blood A1C values and those in whole blood ( r = 0.986 and intraclass correlation value = 0.993). Glycated hemoglobin values on day 10 and day 15 were comparable with the values on day 1 with a shift in mean of just 1% on day 10 and 3.04% on day 15. Conclusion: In conclusion, dried blood can be used for measurement of A1C by immunoturbidimetric method, and further stability of A1C measurement from dried blood for up to 15 days at 4°C makes it an ideal matrix for transportation in developing countries like India.


2020 ◽  
Vol 42 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Ana Dilo ◽  
Youssef Daali ◽  
Jules Desmeules ◽  
Yves Chalandon ◽  
Chakradhara R. S. Uppugunduri ◽  
...  

Author(s):  
Steven J. McCann ◽  
Scott Gillingwater ◽  
Brian G. Keevil ◽  
Donald P. Cooper ◽  
Michel R. Morris

Background: Current sampling for total homocysteine (tHcy) is problematic, requiring plasma separation within 15 min. The aim of this study was to develop a liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for the measurement of tHcy in plasma and dried blood spots and to determine whether the dried blood spot concentration could be used to predict plasma concentrations of tHcy. Methods: LC-MS/MS methodology was optimized to measure tHcy in plasma and dried blood spots. Fifty blood samples collected from heart transplant patients were used to form dried blood spots and for plasma analysis. Plasma tHcy was also measured using the Abbott IMx1 method and values were compared to the tHcy concentrations determined in plasma and dried blood spots using LC-MS/MS methodology. Results: The plasma tHcy LC-MS/MS results compared well with the IMx values: LC-MS/MS=1·18(IMx)-0·44 ( r2=0·915). The within-batch precision ( n =10) of the plasma LC-MS/MS method was < 2·0% at 14·6 and 37·7 µmol/L, respectively; the between-batch precision ( n=10) was 5·0 and 8·0%, respectively, at these concentrations. The method was found to be sensitive down to 1 µmol/L and linear up to at least 100 µmol/L. Dried blood spot LC-MS/MS results were considerably lower than the plasma IMx values ( P < 0·0001): dried blood spot LC-MS/MS=0·33IMx+1·77 ( r2=0·682). The within-batch precision ( n=20) of the dried blood spot LC-MS/MS method was 7·3% and 4·7% at concentrations of 4·0 and 7·9 µmol/L, respectively; the between-batch precision was 12·6% and 7·9% at concentrations of 5·1 and 8·0 µmol/L, respectively. To assess whether dried blood spots are suitable as a screening test to predict plasma tHcy concentrations, arbitary cut-off levels were compared. If it is assumed that a plasma tHcy concentration of >15 µmol/L is raised, a dried blood spot result of >6·8 µmol/L has a sensitivity and specificity in detecting a raised plasma tHcy of 83·3% and 96·2%, respectively, and a positive and negative predictive value of 95% and 86%, respectively, with an efficiency of 90%. Use of a dried blood spot cut-off concentration of 6·2 µmol/L for predicting high plasma tHcy concentrations (above 15 µmol/L) has a sensitivity and specificity of 95·8% and 73·1%, respectively, positive and negative predictive values of 76% and 95%, respectively, and an efficiency of 84%. Conclusions: We have developed a precise and accurate LC-MS/MS method for measuring plasma tHcy concentrations, which uses a small volume of plasma and is suitable for routine use. A satisfactory LC-MS/MS method for the measurement of tHcy in dried blood spots was also developed; this method might be useful in routine screening for raised plasma concentrations of tHcy.


Sign in / Sign up

Export Citation Format

Share Document