scholarly journals Shikonin inhibits migration and invasion of triple-negative breast cancer cells by suppressing epithelial-mesenchymal transition via miR-17-5p/PTEN/Akt pathway

2020 ◽  
Author(s):  
Chang Bao ◽  
Tao Liu ◽  
Lingbo Qian ◽  
Chi Xiao ◽  
Xinru Zhou ◽  
...  

Abstract Background: Triple-negative breast cancer(TNBC) is a great threat to global women’s health due to its high metastatic potential. Epithelial-to-mesenchymal transition (EMT) is considered as a key event in the process of metastasis. So the pharmacological targeting of EMT might be a promising strategy in improving the therapeutic efficacy of TNBC. Here, we investigated the effect of shikonin exerting on EMT and consequently the metastasis of TNBC cells and its underlying mechanism.Methods: The invasive and migratory capacities of MDA-MB-231 cells were tested using transwell invasion and wound healing assay. MiR-17-5p expression was examined by qRT-PCR. MiR-17-5p targeted genes were predicted with different bioinformatic algorithms from four databases (TargetScan, miRanda, PITA and picTar) and further screened by KEGG pathway enrichment analysis. The differential expressions of predicted genes and their correlations with miR-17-5p were identifed in breast cancer patients based on The Cancer Genome Atlas (TCGA) database. The interaction between PTEN and miR-17-5p was analyzed by luciferase reporter assay. The overexpression vector and small interfering RNA were constructed to investigate the role PTEN played in matastasis and EMT regulation. The expressions of EMT markers, Akt and p-Akt were evaluated by western blot.Results: Shikonin inhibited the migration and invasion of MDA-MB-231 cells by suppressing EMT. Shikonin suppressed the expression of miR-17-5p, which was upregulated in breast cancer and promoted cancer cell migration, invasion and EMT. The 3’-untranslated region of PTEN was found to be direct binding target of miR-17-5p. PTEN expression increased or decreased in breast cancer cells transfected with miR-17-5p inhibitors or mimics respectively. PTEN functioned as a suppressor both in the metastasis and EMT of TNBC cells. Overexpression or knockdown of PTEN reduced or increased the Akt and p-Akt expression respectively.Conclusions: Shikonin inhibits migration and invasion of TNBC cells by suppressing EMT via miR-17-5p/PTEN/Akt pathway. This suggests shikonin as a promising therapeutic agent to counteract metastasis in the TNBC patients.

2019 ◽  
Vol 20 (24) ◽  
pp. 6162 ◽  
Author(s):  
Soo Jung Lee ◽  
Jae-Hwan Jeong ◽  
Seung Hee Kang ◽  
Jieun Kang ◽  
Eun Ae Kim ◽  
...  

MicroRNAs (miRNAs) can be used to target a variety of human malignancy by targeting their oncogenes or tumor suppressor genes. The developmental endothelial locus-1 (Del-1) might be under miRNA regulation. This study investigated microRNA-137 (miR-137) function and Del-1 expression in triple-negative breast cancer (TNBC) cells and tissues. Del-1 mRNA and miRNA-137 levels were determined via qRT-PCR in breast cancer cells (MDA-MB-231, MCF7, SK-BR3, and T-47D) and tissues from 30 patients with TNBC. The effects of miR-137 on cell proliferation, migration, and invasion were determined using MTT assays, wound healing, and Matrigel transwell assays. The luciferase reporter assay revealed direct binding of miR-137 to the 3′-UTR of Del-1. miR-137 inhibited cell proliferation, migration, and invasion of MDA-MB-231 cells. Among the 30 TNBC specimens, miR-137 was downregulated and Del-1 level in plasma was significantly elevated relative to normal controls. It is concluded that miR-137 regulates Del-1 expression in TNBC by directly binding to the Del-1 gene and cancer progression. The results implicate miR-137 as a new therapeutic biomarker for patients with TNBC.


2021 ◽  
Author(s):  
Yang Zhao ◽  
Hefen Sun ◽  
Yuanyuan Zhao ◽  
Qiqi Liu ◽  
Yang Liu ◽  
...  

Abstract Metastasis is a major cause of death in individuals suffering from triple-negative breast cancer. Alternative splicing of mRNA precursor allows cancer cells to create different protein isoforms which may promote metastasis. Quantitative proteomic analysis of primary and metastatic breast cancer cells revealed that nuclear speckle-related protein 70 (NSrp70) was significantly downregulated in highly metastatic cells. Downregulation of NSrp70 promoted the migration and invasion of breast cancer cells in vitro and in vivo. Mechanistically, we found that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of TGF-beta receptor 1(TβR1) through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition (EMT) phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 may serve as a metastasis suppressor.


Sign in / Sign up

Export Citation Format

Share Document