scholarly journals Jointly Optimized Design of Distributed RS Codes by Proper Selection in Relay

Author(s):  
Pengcheng Guo ◽  
Fengfan Yang ◽  
Chunli Zhao ◽  
Waheed Ullah

Abstract This paper proposes a distributed RS coding scheme which is comprised of two different ReedSolomon (RS) codes over fast Rayleigh fading channel. Practically in any distributed coding scheme, an appropriate encoding strategy at the relay plays a vital role in achieving an optimized code at the destination. Therefore, the authors have proposed an efficient approach for proper selection of information at the relay based on subspace approach. Using this approach as the proper benchmark, another more practical selection approach with low complexity is also proposed. Monte Carlo simulations demonstrate that the distributed RS coding scheme under the two approaches can achieve nearly the same bit error rate (BER) performance. Furthermore, to jointly decode the source and relay codes at the destination, two different decoding algorithms named as naive and smart algorithms are proposed. The simulation results reveal that the advantage of smart algorithm as compared to naive one. The proposed distributed RS coding scheme with smart algorithm outperforms its non-cooperative scheme by a gain of 2.4-3.2 dB under identical conditions. Moreover, the proposed distributed RS coding scheme outperforms multiple existing distributed coding schemes, making it an excellent candidate for the future distributed coding wireless communications.

Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


Author(s):  
XIANGBIN YU ◽  
GUANGGUO BI

Space-time block (STB) coding has been an effective transmit diversity technique for combating fading recently. In this paper, a full-rate and low-complexity STB coding scheme with complex orthogonal design for multiple antennas is proposed, and turbo code is employed as channel coding to improve the proposed code scheme performance further. Compared with full-diversity multiple antennas STB coding schemes, the proposed scheme can implement full data rate, partial diversity and a smaller complexity, and has more spatial redundancy information. Moreover, using the proposed scheme can form efficient spatial interleaving, thus performance loss due to partial diversity is effectively compensated by the concatenation of turbo coding. Simulation results show that on the condition of the same system throughput and concatenation of turbo code, the proposed scheme has lower bit error rate (BER) than those low-rate and full-diversity multiple antennas STB coding schemes.


2016 ◽  
Vol 35 (12) ◽  
pp. 4331-4349 ◽  
Author(s):  
Xiwu Shang ◽  
Guozhong Wang ◽  
Tao Fan ◽  
Yan Li ◽  
Yifan Zuo

2014 ◽  
Vol 9 (5) ◽  
pp. 1762-1773
Author(s):  
Jihwan Yoo ◽  
Min Soo Ko ◽  
Soon Chul Kwon ◽  
Young-Ho Seo ◽  
Dong-Wook Kim ◽  
...  

2020 ◽  
Vol 37 (2) ◽  
pp. 125-139
Author(s):  
John Habron ◽  
Liesl van der Merwe

AbstractThis article is a narrative inquiry of the lived spiritual experiences of students participating in Dalcroze Eurhythmics training. Previous studies have located Jaques-Dalcroze’s own writings and thought within the context of spirituality and have explored the spiritual experiences of Dalcroze teachers, but students’ perspectives remain to be investigated. We interviewed seven students, broadly defined as anyone currently attending regular Dalcroze training or who have recently attended Dalcroze courses and still consider themselves Dalcroze students. Various strategies for narrative data analysis were synthesised into our own coding scheme. Themes emerged from the data analysis: situation, continuity, personal interaction, social interaction and significant moments. The themes helped us construct a fictive conversation between the participants, using direct quotations from the interviews. Implications for practice focus on what inhibits and promotes experiences of spirituality in the Dalcroze class. This research will be relevant to music educators, as it gives clear, evidence-based guidelines on how opportunities for spirituality can be created in the Dalcroze classroom. It also offers an original synthesis of existing coding schemes for other researchers undertaking narrative inquiries.


2018 ◽  
Vol 22 (9) ◽  
pp. 1754-1757 ◽  
Author(s):  
Xabier Insausti ◽  
Pedro M. Crespo ◽  
Jesus Gutierrez-Gutierrez ◽  
Marta Zarraga-Rodriguez
Keyword(s):  

Author(s):  
P. Praveena

<p>Present emerging trend in space science applications is to explore and utilize the deep space. Image coding in deep space communications play vital role in deep space missions. Lossless image compression has been recommended for space science exploration missions to retain the quality of image. On-board memory and bandwidth requirement is reduced by image compression. Programmable logic like field programmable gate array (FPGA) offers an attractive solution for performance and flexibility required by real time image compression algorithms. The powerful feature of FPGA is parallel processing which allows the data to process quicker than microprocessor implementation. This paper elaborates on implementing low complexity lossless image compression algorithm coder on FPGA with minimum utilization of onboard resources for deep space applications.</p>


Sign in / Sign up

Export Citation Format

Share Document