scholarly journals An autism-associated mutation in salt inducible kinase 1 causes repetitive behavior and social deficits due to enhanced excitatory neuronal functions in mice.

Author(s):  
Moataz Badawi ◽  
Takuma Mori ◽  
Taiga Kurihara ◽  
Takahiro Yoshizawa ◽  
Katsuhiro Nohara ◽  
...  

Abstract Background:Six mutations in the salt inducible kinase 1 (SIK1) coding gene have been identified in the early infantile epileptic encephalopathy (EIEE-30) patients accompanied by autistic symptoms, such as repetitive behavior and social behavioral deficits. Among these mutations, two are nonsense mutations that truncate the C-terminal region. It has been shown that the C-terminal truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders.Methods:We generated SIK1 mutant (SIK1-MT) mice recapitulating the C-terminal truncated mutations using CRISPR/Cas9-mediated genome editing. We performed cellular assays to examine the subcellular localization of SIK1-MT. We also performed patch clamp electrophysiological recording and behavioral tests to evaluate the neuronal functions and behaviors in SIK1-MT mice. Pharmacological experiments using risperidone were also performed to examine the potential therapeutics of the disorder.Results:SIK1-MT protein was distributed in the nucleus and cytoplasm, whereas the distribution of wild-type SIK1 was restricted to the nucleus. We found the disruption of excitatory and inhibitory (E/I) synaptic balance due to an increase in excitatory synaptic transmission and enhancement of neural excitability in the pyramidal neurons in layer 5 of the medial prefrontal cortex in SIK1-MT mice. We also found the increased repetitive behavior and social behavioral deficits in SIK1-MT mice. The risperidone administration attenuated the neural excitability and excitatory synaptic transmission, but the disrupted E/I synaptic balance was unchanged because it also reduced the inhibitory synaptic transmission. Risperidone also eliminated the repetitive behavior, but not social behavioral deficits.Limitations:We failed to identify drugs that can cure the social behavioral deficits in this mouse model.Conclusions:In the present study, we generated model mice for EIEE-30 recapitulating C-terminal truncated SIK1 mutation discovered in human patients. We found that the C-terminal deletion of SIK1 affects the subcellular distribution of SIK1, resulting in the elevated excitability of neuronal networks and autistic behaviors in the mutant mice. Repetitive behavior, but not social deficits, was restored by risperidone, probably due to the decrease of both excitatory and inhibitory synaptic functions by the drug.

2021 ◽  
Vol 14 ◽  
Author(s):  
Moataz Badawi ◽  
Takuma Mori ◽  
Taiga Kurihara ◽  
Takahiro Yoshizawa ◽  
Katsuhiro Nohara ◽  
...  

Six mutations in the salt-inducible kinase 1 (SIK1)-coding gene have been identified in patients with early infantile epileptic encephalopathy (EIEE-30) accompanied by autistic symptoms. Two of the mutations are non-sense mutations that truncate the C-terminal region of SIK1. It has been shown that the C-terminal-truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders. We generated SIK1-mutant (SIK1-MT) mice recapitulating the C-terminal-truncated mutations using CRISPR/Cas9-mediated genome editing. SIK1-MT protein was distributed in the nucleus and cytoplasm, whereas the distribution of wild-type SIK1 was restricted to the nucleus. We found the disruption of excitatory and inhibitory (E/I) synaptic balance due to an increase in excitatory synaptic transmission and enhancement of neural excitability in the pyramidal neurons in layer 5 of the medial prefrontal cortex in SIK1-MT mice. We also found the increased repetitive behavior and social behavioral deficits in SIK1-MT mice. The risperidone administration attenuated the neural excitability and excitatory synaptic transmission, but the disrupted E/I synaptic balance was unchanged, because it also reduced the inhibitory synaptic transmission. Risperidone also eliminated the repetitive behavior but not social behavioral deficits. These results indicate that risperidone has a role in decreasing neuronal excitability and excitatory synapses, ameliorating repetitive behavior in the SIK1-truncated mice.


2019 ◽  
Author(s):  
Adam J. Harrington ◽  
Catherine M. Bridges ◽  
Kayla Blankenship ◽  
Ahlem Assali ◽  
Stefano Berto ◽  
...  

SummaryMicrodeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). Here, we show that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding-deficient global Mef2c heterozygous mice (Mef2c-Het) display numerous MCHS-like behaviors, including autism-related behaviors, as well as deficits in cortical excitatory synaptic transmission. We find that hundreds of genes are dysregulated in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observe an enrichment of upregulated microglial genes, but not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduces a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduces social deficits and repetitive behavior. Together our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.


1998 ◽  
Vol 79 (4) ◽  
pp. 2013-2024 ◽  
Author(s):  
Albert Y. Hsia ◽  
Robert C. Malenka ◽  
Roger A. Nicoll

Hsia, Albert Y., Robert C. Malenka, and Roger A. Nicoll. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 79: 2013–2024, 1998. Assessing the development of local circuitry in the hippocampus has relied primarily on anatomic studies. Here we take a physiological approach, to directly evaluate the means by which the mature state of connectivity between CA3 and CA1 hippocampal pyramidal cells is established. Using a technique of comparing miniature excitatory postsynaptic currents (mEPSCs) to EPSCs in response to spontaneously occurring action potentials in CA3 cells, we found that from neonatal to adult ages, functional synapses are created and serve to increase the degree of connectivity between CA3-CA1 cell pairs. Neither the probability of release nor mean quantal size was found to change significantly with age. However, the variability of quantal events decreases substantially as synapses mature. Thus in the hippocampus the developmental strategy for enhancing excitatory synaptic transmission does not appear to involve an increase in the efficacy at individual synapses, but rather an increase in the connectivity between cell pairs.


Sign in / Sign up

Export Citation Format

Share Document