neuronal functions
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 141)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 23 (2) ◽  
pp. 892
Author(s):  
Mariia Belinskaia ◽  
Tomas Zurawski ◽  
Seshu Kumar Kaza ◽  
Caren Antoniazzi ◽  
J. Oliver Dolly ◽  
...  

Nerve growth factor (NGF) is known to intensify pain in various ways, so perturbing pertinent effects without negating its essential influences on neuronal functions could help the search for much-needed analgesics. Towards this goal, cultured neurons from neonatal rat trigeminal ganglia—a locus for craniofacial sensory nerves—were used to examine how NGF affects the Ca2+-dependent release of a pain mediator, calcitonin gene-related peptide (CGRP), that is triggered by activating a key signal transducer, transient receptor potential vanilloid 1 (TRPV1) with capsaicin (CAP). Measurements utilised neurons fed with or deprived of NGF for 2 days. Acute re-introduction of NGF induced Ca2+-dependent CGRP exocytosis that was inhibited by botulinum neurotoxin type A (BoNT/A) or a chimera of/E and/A (/EA), which truncated SNAP-25 (synaptosomal-associated protein with Mr = 25 k) at distinct sites. NGF additionally caused a Ca2+-independent enhancement of the neuropeptide release evoked by low concentrations (<100 nM) of CAP, but only marginally increased the peak response to ≥100 nM. Notably, BoNT/A inhibited CGRP exocytosis evoked by low but not high CAP concentrations, whereas/EA effectively reduced responses up to 1 µM CAP and inhibited to a greater extent its enhancement by NGF. In addition to establishing that sensitisation of sensory neurons to CAP by NGF is dependent on SNARE-mediated membrane fusion, insights were gleaned into the differential ability of two regions in the C-terminus of SNAP-25 (181–197 and 198–206) to support CAP-evoked Ca2+-dependent exocytosis at different intensities of stimulation.


2022 ◽  
Author(s):  
Alvin Joselin ◽  
Yasmilde Rodríguez González ◽  
Fatemeh Kamkar ◽  
Paymaan Jafar-nejad ◽  
Suzi Wang ◽  
...  

Cyclin Dependent Kinase family members include members of the non-cell cycle CDK, such as PFTK1/Eip63E. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand its role in the CNS by studying the fly ventral nerve cord during development. Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. We describe a functional interaction between Eip63E and Rho1. Studies in cultured cortical neurons from PFTK1 knockout mice, confirmed that PFTK1 plays a role in axonal outgrowth and its deficiency resulted in faster growing axons. We demonstrate that GDP bound RhoA is a substrate of PFTK1 and this phosphorylation resulted in higher activity of RhoA. In conclusion, our work represents the first steps in the characterization of the neuronal functions of PFTK1 and points to RhoA activation in the regulation of PFTK1 mediated axogenesis.


2022 ◽  
Vol 15 ◽  
Author(s):  
Vahid Salari ◽  
Serafim Rodrigues ◽  
Erhan Saglamyurek ◽  
Christoph Simon ◽  
Daniel Oblak

The present paper examines the viability of a radically novel idea for brain–computer interface (BCI), which could lead to novel technological, experimental, and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine. In closed loop, the machine can stimulate the brain with appropriate signals. In recent years, it has been shown that there is some ultraweak light emission from neurons within or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling pieces of evidence are beginning to emerge that UPE may well play an informational role in neuronal functions. In fact, several experiments point to a direct correlation between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the interior surface of the skull may enable a new form of extraction of the relevant features from the UPE signals. In the current technology landscape, photonic technologies are advancing rapidly and poised to overtake many electrical technologies, due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some very major conjectures, which need to be experimentally verified, and therefore we discuss the controversial parts, feasibility of technology and limitations, and potential impact of this envisaged technology if successfully implemented in the future.


2022 ◽  
Vol 23 (1) ◽  
pp. 528
Author(s):  
Beatriz Pardo ◽  
Eduardo Herrada-Soler ◽  
Jorgina Satrústegui ◽  
Laura Contreras ◽  
Araceli del Arco

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named “early infantile epileptic encephalopathy 39” (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


2022 ◽  
Author(s):  
Wei Sun ◽  
Xiao Chen ◽  
Yazi Mei ◽  
Yang Yang ◽  
Xiaoliang Li ◽  
...  

Fear regulation changes as a function of age and adolescence is a key developmental period for the continued maturation of fear neural circuitry. The involvement of prelimbic proBDNF in fear memory extinction and its mediated signaling were reported previously. Given the inherent high level of proBDNF during juvenile period, we tested whether prelimbic proBDNF regulated synaptic and neuronal functions allowing to influencing retrieval-dependent memory processing. By examining freezing behavior of auditory fear conditioned rats, we found high levels of prelimbic proBDNF in juvenile rats enhanced destabilization of the retrieval-dependent weak but not strong fear memory through activating p75NTR-GluN2B signaling. This modification was attributed to the increment in proportion of thin type spine and promotion in synaptic function, as evidence by facilitation of NMDA-mediated EPSCs and GluN2B-dependent synaptic depression. The strong prelimbic theta- and gamma-oscillation coupling predicted the suppressive effect of proBDNF on the recall of post-retrieval memory. Our results critically emphasize the importance of developmental proBDNF for modification of retrieval-dependent memory and provide a potential critical targeting to inhibit threaten memories associated with neurodevelopment disorders.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Ilkka Fagerlund ◽  
Antonios Dougalis ◽  
Anastasia Shakirzyanova ◽  
Mireia Gómez-Budia ◽  
Anssi Pelkonen ◽  
...  

Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seonhee Kim ◽  
Florence Larrous ◽  
Hugo Varet ◽  
Rachel Legendre ◽  
Lena Feige ◽  
...  

Rabies is a zoonotic disease caused by rabies virus (RABV). As rabies advances, patients develop a variety of severe neurological symptoms that inevitably lead to coma and death. Unlike other neurotropic viruses that can induce symptoms of a similar range, RABV-infected post-mortem brains do not show significant signs of inflammation nor the structural damages on neurons. This suggests that the observed neurological symptoms possibly originate from dysfunctions of neurons. However, many aspects of neuronal dysfunctions in the context of RABV infection are only partially understood, and therefore require further investigation. In this study, we used differentiated neurons to characterize the RABV-induced transcriptomic changes at the early time-points of infection. We found that the genes modulated in response to the infection are particularly involved in cell cycle, gene expression, immune response, and neuronal function-associated processes. Comparing a wild-type RABV to a mutant virus harboring altered matrix proteins, we found that the RABV matrix protein plays an important role in the early down-regulation of host genes, of which a significant number is involved in neuronal functions. The kinetics of differentially expressed genes (DEGs) are also different between the wild type and mutant virus datasets. The number of modulated genes remained constant upon wild-type RABV infection up to 24 h post-infection, but dramatically increased in the mutant condition. This result suggests that the intact viral matrix protein is important to control the size of host gene modulation. We then examined the signaling pathways previously studied in relation to the innate immune responses against RABV, and found that these pathways contribute to the changes in neuronal function-associated processes. We further examined a set of regulated genes that could impact neuronal functions collectively, and demonstrated in calcium imaging that indeed the spontaneous activity of neurons is influenced by RABV infection. Overall, our findings suggest that neuronal function-associated genes are modulated by RABV early on, potentially through the viral matrix protein-interacting signaling molecules and their downstream pathways.


Author(s):  
Yuting Wu ◽  
Xinxin Wang ◽  
Wei Lu

Abstract Neuromorphic systems that can emulate the structure and the operations of biological neural circuits have long been viewed as a promising hardware solution to meet the ever-growing demands of big-data analysis and AI tasks. Recent studies on resistive switching or memristive devices have suggested such devices may form the building blocks of biorealistic neuromorphic systems. In a memristive device, the conductance is determined by a set of internal state variables, allowing the device to exhibit rich dynamics arising from the interplay between different physical processes. Not only can these devices be used for compute-in-memory architectures to tackle the von Neumann bottleneck, the switching dynamics of the devices can also be used to directly process temporal data in a biofaithful fashion. In this Review, we analyze the physical mechanisms that govern the dynamic switching behaviours and highlight how these properties can be utilized to efficiently implement synaptic and neuronal functions. Prototype systems that have been used in machine learning and brain-inspired network implementations will be covered, followed with discussions on the challenges for large scale implementations and opportunities for building bio-inspired, highly complex computing systems.


2021 ◽  
Vol 18 ◽  
Author(s):  
Luan Luu ◽  
Giuseppe D. Ciccotosto ◽  
Roberto Cappai

: The Amyloid Precursor Protein (APP) is principally known and studied for its involve- ment in Alzheimer’s disease as the source of the amyloid β peptide; however, its physiological ac- tions within the nervous system are also important as it is involved in a range of neuronal activi- ties, including neurogenesis, synaptic plasticity, neurite outgrowth, and neuroprotection. Of the dif- ferent neuronal functions that APP can affect, some may be relevant to APP’s role in Alzheimer’s disease, while others can be primarily related to its physiological roles. This review will focus on APP’s neuritogenic actions and surmise the key molecular mechanisms, as well as the structural and signaling requirements, which form the basis for APP’s neuritogenic effects. Deciphering the normal function(s) of APP is valuable to properly understanding its role in health as well as Alzheimer’s disease.


2021 ◽  
Vol 177 ◽  
pp. S58-S59
Author(s):  
Christian Gonzalez-Billault ◽  
Daniela Caporossi

Sign in / Sign up

Export Citation Format

Share Document