scholarly journals Direct Identification of Two Regimes of Metal Particle Combustion using Condense-luminescence

Author(s):  
Quan Tran ◽  
Michelle L. Pantoya ◽  
Igor Altman

Abstract Experiments were designed to investigate two regimes of metal particle combustion: fast and slow burning regimes. Stress-altering aluminum particles had been shown to produce a distinctly faster burning rate compared to untreated aluminum particles. The root cause for the differences in burning rate had been unclear. In this study, stress-altered and untreated aluminum particles were reacted as dispersed powder in a closed bomb calorimeter designed to monitor the transient temperature changes resulting from energy release upon combustion. The product residue was analyzed for size and species concentration. Results showed metastable γ-alumina that is associated with nano-oxide formation was in substantially higher concentration for stress-altered particle reactions that produced greater energy transfer rates. The increased energy transfer rate corresponded to higher radiant energy emission owing to condensation of nano-oxide particles. This study justifies condense-luminescence as a means for increasing the energy release rate of aluminum particles. By strategically altering metal fuels to control a formation of nano-oxide particles upon combustion, appreciable increases in the radiant energy flux can transform energy release rates.

2005 ◽  
Vol 23 (10) ◽  
pp. 3365-3373 ◽  
Author(s):  
J. Birn ◽  
M. Hesse

Abstract. Magnetic reconnection is the crucial process in the release of magnetic energy previously stored in the magnetotail in association with substorms. However, energy transfer and dissipation in the vicinity of the reconnection site is only a minor part of the energy conversion. We discuss the energy release, transport, and conversion based on large-scale resistive MHD simulations of magnetotail dynamics and more localized full particle simulations of reconnection. We address in particular, where the energy is released, how it propagates and where and how it is converted from one form into another. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer. Bulk kinetic energy, although locally significant in the outflow from the reconnection site, plays a more important role as mediator or catalyst in the transfer between magnetic and thermal energy. Generator regions with potential auroral consequences are located primarily off the equatorial plane in the boundary regions of the plasma sheet.


2019 ◽  
Vol 125 (5) ◽  
Author(s):  
H. T. Rahal ◽  
R. Awad ◽  
A. M. Abdel-Gaber ◽  
S. Marhaba ◽  
A. I. Abou-Aly

2013 ◽  
Vol 176 ◽  
pp. 162-167 ◽  
Author(s):  
Nevenka Rajić ◽  
Nataša Zabukovec Logar ◽  
Aleksander Rečnik ◽  
Mohamad El-Roz ◽  
Frederic Thibault-Starzyk ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (22) ◽  
pp. 13126-13138
Author(s):  
Sartaj Tabassum ◽  
Mohammad Usman ◽  
Hamad A. Al-Lohedan ◽  
Mahmood M. S. Abdullah ◽  
Mohamed A. Ghanem ◽  
...  

Pictorial depiction of appropriately sized homo and hetero nanocrystals of Co3O4 and ZnO·Co3O4 and the optimized structures of [Co3O4]4 [ZnO]4 DMSO adduct.


2009 ◽  
Vol 32 (2) ◽  
pp. 1819-1838 ◽  
Author(s):  
Richard A. Yetter ◽  
Grant A. Risha ◽  
Steven F. Son

2003 ◽  
Vol 800 ◽  
Author(s):  
Kenneth K. Kuo ◽  
Grant A. Risha ◽  
Brian J. Evans ◽  
Eric Boyer

ABSTRACTNano-sized energetic metals and boron particles (with dimensions less than 100 nanometers) possess desirable combustion characteristics such as high heats of combustion and fast energy release rates. Because of their capability to enhance performance, various metals have been introduced in solid propellant formulations, gel propellants, and solid fuels. There are many advantages of incorporating nano-sized materials into fuels and propellants, such as: 1) shortened ignition delay; 2) shortened burn times, resulting in more complete combustion in volume-limited propulsion systems; 3) enhanced heat-transfer rates from higher specific surface area; 4) greater flexibility in designing new energetic fuel/propellants with desirable physical properties; 5) nano-particles can act as a gelling agent to replace inert or low-energy gellants; 6) nano-sized particles can also be dispersed into high-temperature zone for direct oxidation reaction and rapid energy release, and 7) enhanced propulsive performance with increased density impulse. In view of these advantages, numerous techniques have been developed for synthesizing nano-particles of different sizes and shapes. To reduce any possible hazards associated with the handling of nano-sized particles as well as unwanted particle oxidation, various passivation procedures have been developed. Some of these coating materials could enhance the ignition and combustion behavior, others could increase the compatibility of the particles with the surrounding material. Many researchers have been actively engaged in the characterization of the ignition and combustion behavior of nano-sized particles as well as the assessment of performance enhancement of propellants and fuels containing energetic nano-particles. For example, solid fuels could contain a significant percentage of nano-sized particles to increase the mass-burning rate in hybrid rocket motors, the regression rate of solid propellants can be increased by several times when nano-sized particles are incorporated into the formulation. Specifically, hybrid motor data showed that the addition of 13% energetic aluminum powders can increase the linear regression rate of solid HTPB-based fuel by 123% in comparison to the non-aluminized HTPB fuel at a moderate gaseous oxidizer mass flow rate. Strand burner studies of two identical solid propellant formulations (one with 18% regular aluminum powder and the other with 9% aluminum replaced by Alex® powder) showed that nano-sized particles can increase the linear burning rate of solid propellants by 100%. In addition to solid fuels and propellants, spray combustion of bipropellants has been conducted using gel propellants impregnated with nano-sized boron particles as the fuel in a rocket engine. High combustion efficiencies were obtained from burning nano-sized boron particles contained in a non-toxic liquid-fuel spray. Materials characterization such as chemical analyses to determine the active aluminum content, density measurements, and imaging using an electron microscope have been performed on both neat nano-sized particles and mixtures containing the energetic materials. In general, using energetic nano-sized particles as a new design parameter, propulsion performance of future propellants and fuels can be greatly enhanced.


1970 ◽  
Vol 6 (3) ◽  
pp. 356-358 ◽  
Author(s):  
P. F. Pokhil ◽  
V. S. Logachev ◽  
V. M. Mal'tsev

Sign in / Sign up

Export Citation Format

Share Document