scholarly journals Synthesis and Electrochemical Performance of Mesoporous MnC2O4 Nanorod/rGO Composite Anode for Lithium-ion Batteries

Author(s):  
Ya-Nan Zhang ◽  
Li-Ying Xue ◽  
Yong Zhang ◽  
Jing Su ◽  
Yun-Fei Long Long ◽  
...  

Abstract MnC2O4 is a promising anode material for high-energy lithium-ion batteries due to its low cost and high capacity. However, its application is limited by the poor cyclic-stability and rate performance caused by its low conductivity. Herein, mesoporous MnC2O4 nanorod/rGO composite is prepared via precipitation followed by a reflux reduction process, where MnC2O4 nanorods are attached to the surface of graphene through electrostatic adsorption. This composite delivers a discharge capacity of 1082, 964, and 808 mAh·g-1 after 200 cycles at 3, 5, and 8 C, respectively. The good electrochemical performance can be attributed to the synergistic effect between mesoporous nanorods and rGO. This synergistic effect not only offers high conductivity, nanoparticles, and abundant mesopores to accelerate electrode kinetics but also provides a more stable structure to reduce the volume effect during the charge/discharge process. Therefore, mesoporous MnC2O4 nanorod/rGO composite can find a potential application in high-energy lithium-ion batteries.

2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2020 ◽  
Vol 4 (11) ◽  
pp. 5757-5764
Author(s):  
Wen Zheng ◽  
Wanying Bi ◽  
Xuenong Gao ◽  
Zhengguo Zhang ◽  
Wenhui Yuan ◽  
...  

The Ni–Co-BTC anode shows excellent electrochemical performance, which could be ascribed to the intercalation/deintercalation mechanism and the synergistic effect of two cations.


2020 ◽  
Vol 4 (9) ◽  
pp. 4625-4636
Author(s):  
Orapim Namsar ◽  
Thanaphat Autthawong ◽  
Viratchara Laokawee ◽  
Ruttapol Boonprachai ◽  
Mitsutaka Haruta ◽  
...  

Novel anode materials for lithium-ion batteries, nanocomposites of Sn (or SnO2) and SiO2 with graphene-based sheets (GO, rGO and NrGO), were synthesized by a facile and low-cost technique. The capacity of all composites was relatively high as compared to traditional graphite.


2014 ◽  
Vol 809-810 ◽  
pp. 781-786
Author(s):  
Min Liu ◽  
Na Zhang ◽  
Feng Hui Zhao ◽  
Xiao Qin Zhao ◽  
Ke Chen ◽  
...  

As lithium-ion battery anode materials, silicon has the highest specific capacity. In order to restrain pure silicon’s serious volume change and enhance its electrochemical performance, Si/SiO2 composites were prepared by using a convenient high energy ball-milling technique. The characteristics of the composites as anode material for rechargeable lithium-ion batteries were investigated by X-ray diffraction and scanning electron microscopy methods. The electrochemical performance of the anode material was studied, and it was found the composite anode had a high capacity of 1333 mAhg-1 in the first cycle and 400 mAhg-1 could still be obtained after 46 cycles. Such prepared materials displayed improved cycle life.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Haisheng Han ◽  
Yanli Song ◽  
Yongguang Zhang ◽  
Gulnur Kalimuldina ◽  
Zhumabay Bakenov

AbstractIn recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g–1 after 100 cycles at 0.1 A g–1 and maintained a high capacity and cycling stability at 0.5 A g–1. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge–discharge processes.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2016 ◽  
Vol 4 (47) ◽  
pp. 18223-18239 ◽  
Author(s):  
Miriam Keppeler ◽  
Nan Shen ◽  
Shubha Nageswaran ◽  
Madhavi Srinivasan

Review of the research progress in α-Fe2O3/carbon nanocomposites with superior electrochemical performance as promising alternatives to graphite anodes in LIBs.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

Author(s):  
Sen Yang ◽  
Ting Li ◽  
Yiwei Tan

Potassium-ion batteries (PIBs) that serve as low-cost and large-scale secondary batteries are regarded as promising alternatives and supplement to lithium-ion batteries. Hybrid active materials can be featured with the synergistic...


Sign in / Sign up

Export Citation Format

Share Document