Evolution of Mediterranean Forest Ecosystems and Impact of Natural and Anthropogenic Disturbances: Case of the Cork Oak Forest- Tlemcen- Algeria

2020 ◽  
Author(s):  
Bright Danso Appiagyei ◽  
Belhoucine-Guezouli Latifa ◽  
Morsli Boutkhil ◽  
Enoch Bessah

Abstract Background: Forest cover change continues to be one of the most important topics in global environment discussions and negotiations. In North Africa, there is a broad consensus on forest decline but available information on the extent and rate of degradation has been far lower than needed. The present study uses the example of the cork oak forest of Tlemcen (Hafir-Zariffet forest), North West Algeria, to provide spatially explicit and up-to-date information on forest cover changes. The goal was to fill a knowledge gap in a poorly studied area by determining the extent of changes in forest cover. Methods: Land use land cover maps of 1989, 1999, 2009 and 2019 were classified using Random Forest Algorithm in R software and change assessed via intensity analysis. Results: The results revealed that sparse vegetation was the dominant land cover at the end of the study period, although it decreased from 71.25% in 1989 to 65.24% in 2019. The lowest coverage was water body from 0.47% in 1989 to 0.18% in 2019. Sparse vegetation and dense forest experienced a major decline of 6.01% and 3.22% respectively. On the other hand, open forest (+6.96%), bare areas (+0.37%), settlements (+1.99%) and agricultural (+0.21%) increased. In the LULC transitions analysis, dense forest recorded loss for two consecutive periods (1989-1999 and 1999-2009). The path of conversion was mainly from dense forest to open forest, an evidence of anthropogenic activities. Conclusion: The findings show that the cork oak forest of Hafir-Zariffet suffered multiple pressures, which cause degradation of this natural heritage. These pressures continue to increase the fragility of forest ecosystem and can affect the rehabilitation or even its resilience. In order to conserve the dwindling cork oak forest, a sustainable and effective management which ensures ecological, economic and social balance should be adopted.

2020 ◽  
Vol 62 (4) ◽  
pp. 288-305
Author(s):  
Addo Koranteng ◽  
Isaac Adu-Poku ◽  
Emmanuel Donkor ◽  
Tomasz Zawiła-Niedźwiecki

AbstractLand use and land cover (LULC) terrain in Ghana has undergone profound changes over the past years emanating mainly from anthropogenic activities, which have impacted countrywide and sub-regional environment. This study is a comprehensive analysis via integrated approach of geospatial procedures such as Remote Sensing (RS) and Geographic Information System (GIS) of past, present and future LULC from satellite imagery covering Ghana’s Ashanti regional capital (Kumasi) and surrounding districts. Multi-temporal satellite imagery data sets of four different years, 1990 (Landsat TM), 2000 (Landsat ETM+), 2010 (Alos and Disaster Monitoring Constellation-DMC) and 2020 (SENTINEL), spanning over a 30-year period were mapped. Five major LULC categories – Closed Forest, Open Forest, Agriculture, Built-up and Water – were delineated premised on the prevailing geographical settings, field study and remote sensing data. Markov Cellular Automata modelling was applied to predict the probable LULC change consequence for the next 20 years (2040). The study revealed that both Open Forest and Agriculture class categories decreased 51.98 to 38.82 and 27.48 to 20.11, respectively. Meanwhile, Built-up class increased from 4.8% to 24.8% (over 500% increment from 1990 to 2020). Rapid urbanization caused the depletion of forest cover and conversion of farmlands into human settlements. The 2040 forecast map showed an upward increment in the Built-up area up to 35.2% at the expense of other LULC class categories. This trend from the past to the forecasted future would demand that judicious LULC resolutions have to be made to keep Ghana’s forest cover, provide arable land for farming activities and alleviate the effects of climate change.


2019 ◽  
Vol 1 (1) ◽  
pp. 40-51
Author(s):  
Yam Bahadur K.C.

This study analyzed the dynamics of changes of forest cover classes in the inner Terai District Dang, Nepal, based on Landsat Thematic Mapper (TM) images from two different years, viz., 1990 and 2011. Forest cover change analysis was performed through the analysis of a classified Landsat TM image using supervised classification. The overall classification accuracy for seven different land cover classes considered in this study were 80.37% and 80.56% for years 1990 and 2011, respectively. These classified images were further reclassified as forest and non-forest to analyze forest cover dynamics effectively using the post classification change detection. The results indicated that during 1990-2011, the total spatial areal coverage of forest land converted into other land cover was 20612 ha (shrub-land), 8571 ha (agriculture), and 2787 ha (others) non-forest classes. A significant portion of non-forest classes was also converted into forest (e.g., 11433 ha of shrubland, 5663 ha of agriculture, and 5581 ha of other non forest classes). Sand and water bodies remained more or less constant during this period. While forest cover was estimated to be disappearing at the rate of 0.2% per year, dense forest appears to be converting into a sparse forest at the rate of 0.1% per year. Future study to assess the causes and driving forces of forest cover change in Nepal should get guidance from this study on where to target interventions.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


2020 ◽  
Author(s):  
Jakub Nowosad

*Context* Pattern-based spatial analysis provides methods to describe and quantitatively compare spatial patterns for categorical raster datasets. It allows for spatial search, change detection, and clustering of areas with similar patterns. *Objectives* We developed an R package **motif** as a set of open-source tools for pattern-based spatial analysis. *Methods* This package provides most of the functionality of existing software (except spatial segmentation), but also extends the existing ideas through support for multi-layer raster datasets. It accepts larger-than-RAM datasets and works across all of the major operating systems. *Results* In this study, we describe the software design of the tool, its capabilities, and present four case studies. They include calculation of spatial signatures based on land cover data for regular and irregular areas, search for regions with similar patterns of geomorphons, detection of changes in land cover patterns, and clustering of areas with similar spatial patterns of land cover and landforms. *Conclusions* The methods implemented in **motif** should be useful in a wide range of applications, including land management, sustainable development, environmental protection, forest cover change and urban growth monitoring, and agriculture expansion studies. The **motif** package homepage is https://nowosad.github.io/motif.


Author(s):  
Njini Loveline Munjeb ◽  
Yerima Bernard Palmer Kfuban ◽  
Marie-Louise Tientcheu Avana ◽  
Julius Tata Nfor ◽  
Enang Kogge Rogers

Land cover change is a growing concern around the world. This is especially true for protected areas which are rapidly degrading owing to pressure from anthropogenic activities. The aim of this study was to analyze land cover change for the periods 1980, 2008 and 2020 and its implication on the environment in and around the Dja Biosphere Reserve in south eastern Cameroon. This was done using remote sensing and geographical information systems techniques to quantify and measure the extent of land cover change in the study area for forty years. Household surveys were equally undertaken through the administration of questionnaires to farmers in villages located within the Dja Biosphere Reserve. Collected data was analyzed through the use of GIS software as well as Microsoft Excel. From the land cover maps, four classes were found: dense forest, cultivated areas, water surface, and buildings and bare soils. The transition matrix between 1980 and 2008 showed that 6477.81 ha of dense forest was lost to cultivated areas and between 2008 and 2020, 722.84 ha of dense forest was lost. Between 1980 and 2008 cultivated areas lost 0.07% and gain 0.72% between 2008 and 2020. Building and bare soils increase by 0.28% between 1980 and 2020. The Kappa index of agreement was 0.91 % between 1980 and 2008 and 0.88% between 2008 and 2020. Slash and burn agriculture (43.3%), hunting (36.3%) and harvesting of tree-based products (20.3%) were identified by farmers as the human activities with the most negative impact on the reserve. Results revealed that, there are still opportunities to safe this vulnerable reserve from the negative effects of land cover change through the practice of agroforestry.


2020 ◽  
Vol 14 (5) ◽  
pp. 1734-1751
Author(s):  
Kossi Adjonou ◽  
Issa Adbou-Kérim Bindaoudou ◽  
Kossi Novinyo Segla ◽  
Rodrigue Idohou ◽  
Kolawole Valère Salako ◽  
...  

The Mono Transboundary Biosphere Reserve (RBTM) has significant resources but faces many threats that lead to habitat fragmentation and reduction of ecosystem services. This study, based on satellite image analysis and processing, was carried out to establish the baseline of land cover and land use status and to analyze their dynamics over the period 1986 to 2015. The baseline of land cover established six categories of land use including wetlands (45.11%), mosaic crops/fallow (25.99%), savannas (17.04%), plantation (5.50%), agglomeration/bare soil (4.38%) and dense forest (1.98%). The analysis of land use dynamics showed a regression for wetlands (-23%), savannas (-16.06%) and dense forest (-7.60%). On the contrary, occupations such as mosaic crops/fallow land, urban agglomerations/bare soil and plantation increase in area estimated at respectively 128.64%, 93.94% and 45.23%. These results are of interest to stakeholders who assess decisions affecting the use of natural resources and provide environmental information essential for applications ranging from land-use planning, forest cover monitoring and the production of environmental statistics.Keywords: Land use, baseline, spatial dynamics, environmental statistics, ecological monitoring.


Sign in / Sign up

Export Citation Format

Share Document