scholarly journals Enhanced Antitumor Effects of Follicle-stimulating Hormone Receptor-mediated Hexokinase-2 Depletion on Ovarian Cancer Mediated by a Shift in Glucose Metabolism

2020 ◽  
Author(s):  
Meng Zhang ◽  
Qiyu Liu ◽  
Mingxing Zhang ◽  
Cong Cao ◽  
Xiaoxia Liu ◽  
...  

Abstract Background: Most cancers favor glycolytic-based glucose metabolism. Hexokinase-2 (HK2), the first glycolytic rate-limiting enzyme, shows limited expression in normal adult tissues but is overexpressed in many tumor tissues, including ovarian cancer. HK2 has been shown to be correlated with the progression and chemoresistance of ovarian cancer and could be a therapeutic target. However, the systemic toxicity of HK2 inhibitors has limited their clinical use. Since follicle-stimulating hormone (FSH) receptor (FSHR) is overexpressed in ovarian cancer but not in nonovarian healthy tissues, we designed FSHR-mediated nanocarriers for HK2 shRNA delivery to increase tumor specificity and decrease toxicity. Results: HK2 shRNA was encapsulated in a polyethylene glycol-polyethylenimine copolymer modified with the FSH β 33-53 or retro-inverso FSH β 33-53 peptide. The nanoparticle complex with FSH peptides modification effectively depleted HK2 expression and facilitated a shift towards oxidative glucose metabolism, with evidence of increased oxygen consumption rates, decreased extracellular acidification rates, and decreased extracellular lactate and glucose consumption in A2780 ovarian cancer cells and cisplatin-resistant A2780CP counterpart cells. Consequently, cell proliferation, invasion and migration were significantly inhibited, and tumor growth was suppressed even in cisplatin-resistant ovarian cancer. No obvious systemic toxicity was observed in mice. Moreover, the nanoparticle complex modified with retro-inverso FSH peptides exhibited the strongest antitumor effects and effectively improved cisplatin sensitivity by regulating cisplatin transport proteins and increasing apoptosis through the mitochondrial pathway. Conclusions: These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Meng Zhang ◽  
Qiyu Liu ◽  
Mingxing Zhang ◽  
Cong Cao ◽  
Xiaoxia Liu ◽  
...  

Abstract Background Most cancers favor glycolytic-based glucose metabolism. Hexokinase-2 (HK2), the first glycolytic rate-limiting enzyme, shows limited expression in normal adult tissues but is overexpressed in many tumor tissues, including ovarian cancer. HK2 has been shown to be correlated with the progression and chemoresistance of ovarian cancer and could be a therapeutic target. However, the systemic toxicity of HK2 inhibitors has limited their clinical use. Since follicle-stimulating hormone (FSH) receptor (FSHR) is overexpressed in ovarian cancer but not in nonovarian healthy tissues, we designed FSHR-mediated nanocarriers for HK2 shRNA delivery to increase tumor specificity and decrease toxicity. Results HK2 shRNA was encapsulated in a polyethylene glycol-polyethylenimine copolymer modified with the FSH β 33–53 or retro-inverso FSH β 33–53 peptide. The nanoparticle complex with FSH peptides modification effectively depleted HK2 expression and facilitated a shift towards oxidative glucose metabolism, with evidence of increased oxygen consumption rates, decreased extracellular acidification rates, and decreased extracellular lactate and glucose consumption in A2780 ovarian cancer cells and cisplatin-resistant A2780CP counterpart cells. Consequently, cell proliferation, invasion and migration were significantly inhibited, and tumor growth was suppressed even in cisplatin-resistant ovarian cancer. No obvious systemic toxicity was observed in mice. Moreover, the nanoparticle complex modified with retro-inverso FSH peptides exhibited the strongest antitumor effects and effectively improved cisplatin sensitivity by regulating cisplatin transport proteins and increasing apoptosis through the mitochondrial pathway. Conclusions These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach.


2020 ◽  
Author(s):  
Meng Zhang ◽  
Qiyu Liu ◽  
Mingxing Zhang ◽  
Cong Cao ◽  
Xiaoxia Liu ◽  
...  

Abstract Background: Most cancers favor glycolytic-based glucose metabolism. Hexokinase-2 (HK2), the first glycolytic rate-limiting enzyme, shows limited expression in normal adult tissues but is overexpressed in many tumor tissues, including ovarian cancer. HK2 has been shown to be correlated with the progression and chemoresistance of ovarian cancer and could be a therapeutic target. However, the systemic toxicity of HK2 inhibitors has limited their clinical use. Since follicle-stimulating hormone (FSH) receptor (FSHR) is overexpressed in ovarian cancer but not in nonovarian healthy tissues, we designed FSHR-mediated nanocarriers for HK2 shRNA delivery to increase tumor specificity and decrease toxicity. Results: HK2 shRNA was encapsulated in a polyethylene glycol-polyethylenimine copolymer modified with the FSH β 33-53 or retro-inverso FSH β 33-53 peptide. The nanoparticle complex with FSH peptides modification effectively depleted HK2 expression and facilitated a shift towards oxidative glucose metabolism, with evidence of increased oxygen consumption rates, decreased extracellular acidification rates, and decreased extracellular lactate and glucose consumption in A2780 ovarian cancer cells and cisplatin-resistant A2780CP counterpart cells. Consequently, cell proliferation, invasion and migration were significantly inhibited, and tumor growth was suppressed even in cisplatin-resistant ovarian cancer. No obvious systemic toxicity was observed in mice. Moreover, the nanoparticle complex modified with retro-inverso FSH peptides exhibited the strongest antitumor effects and effectively improved cisplatin sensitivity by regulating cisplatin transport proteins and increasing apoptosis through the mitochondrial pathway. Conclusions: These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Jiawen Zhang ◽  
Jing Zhang ◽  
Yingze Wei ◽  
Qingxian Li ◽  
Qingying Wang

Abstract Enhanced glycolysis has been identified as a hallmark of cancer. As a novel oncogene, ACTL6A is aberrantly amplified in several types of human cancers and has been shown to regulate tumor growth and progression. However, the roles of ACTL6A in the development of ovarian cancer and the regulation of cancer glucose metabolism are mostly unknown. Here we show that ACTL6A is overexpressed in ovarian cancers compared with adjacent non-tumor tissues, and that ACTL6A overexpression correlates with poor prognosis. Silencing of ACTL6A in vitro inhibits proliferation, clonal growth, and migration, and decreases glucose utilization, lactate production, and pyruvate levels of ovarian cancer cells. We found a positive correlation between ACTL6A and PGK1 expression in ovarian cancer tissues. Enforced ACTL6A expression increased PGK1 expression, whereas knockdown of ACTL6A had the opposite effect. Altered ACTL6A expression inhibits the tumorigenicity of ovarian cancer cells in vivo by downregulating PGK1. In addition, the expression of ACTL6A is regulated by follicle-stimulating hormone (FSH) stimulation via PI3K/AKT pathway. Importantly, ACTL6A regulates FSH-enhanced glycolysis in ovarian cancer. Taken together, our findings highlight the critical role of ACTL6A in ovarian cancer development and identify its contribution to glucose metabolism of cancer cells.


Nanoscale ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 2812-2820 ◽  
Author(s):  
Dimple A. Modi ◽  
Suhair Sunoqrot ◽  
Jason Bugno ◽  
Daniel D. Lantvit ◽  
Seungpyo Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document