scholarly journals Epidural Electrical Stimulation Of The Cervical Dorsal Roots Restores Voluntary Arm Control In Paralyzed Monkeys

Author(s):  
Marco Capogrosso ◽  
Beatrice Barra ◽  
Sara Conti ◽  
Matthew Perich ◽  
Katie Zhuang ◽  
...  

Abstract Recovering arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control practically limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts, triggered by intracortical signals produced sustained arm movements enabling monkeys with arm paralysis to perform an unconstrained, three-dimensional reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that artificial recruitment of the sensory afferents was synergistically integrated with spared descending inputs and spinal reflexes to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.

2020 ◽  
Author(s):  
Marco Capogrosso ◽  
Beatrice Barra ◽  
Sara Conti ◽  
Matthew Perich ◽  
Katie Zhuang ◽  
...  

Abstract Regaining arm motor control is critical for people with paralysis. Despite promising results on grasping, no technology could restore effective arm control. Here, we show that electrical stimulation of the cervical spinal cord enabled three monkeys with cervical spinal injury to execute functional arm movements. We designed an epidural interface that engaged surviving spinal circuits via the recruitment of large sensory afferents to produce movement. Simple stimulation bursts produced sustained joint movements which, triggered by movement-related intracortical signals, enabled monkeys with arm paralysis to perform an unconstrained, three-dimensional reach and grasp task. This restoration of voluntary motor control was enabled by the synergistic integration of spared descending commands and electrical stimulation within the spinal cord. The simplicity of this technology promises realistic clinical translation.


2020 ◽  
Author(s):  
B. Barra ◽  
S. Conti ◽  
M.G. Perich ◽  
K. Zhuang ◽  
G. Schiavone ◽  
...  

SUMMARYRegaining arm motor control is a high priority for people with cervical spinal cord injury1. Unfortunately, no therapy can reverse upper limb paralysis. Promising neurotechnologies stimulating muscles to bypass the injury enabled grasping in humans with SCI2,3 but failed to sustain whole arm functional movements that are necessary for daily living activities. Here, we show that electrical stimulation of the cervical spinal cord enabled three monkeys with cervical SCI to execute functional, three-dimensional, arm movements. We designed a lateralized epidural interface that targeted motoneurons through the recruitment of sensory afferents within the dorsal roots and was adapted to the specific anatomy of each monkey. Simple stimulation bursts engaging single roots produced selective joint movements. We then triggered these bursts using movement-related intracortical signals, which enabled monkeys with arm motor deficits to perform an unconstrained, three-dimensional reach and grasp task. Our technology increased muscle activity, forces, task performance and quality of arm movements. Finally, analysis of intra-cortical neural data showed that a synergistic interaction between spared descending pathways and electrical stimulation enabled this restoration of voluntary motor control. Spinal cord stimulation is a mature clinical technology4–7, which suggests a realistic path for our approach to clinical applications.


2019 ◽  
Author(s):  
Shanshan Tang ◽  
Carlos A. Cuellar ◽  
Pengfei Song ◽  
Riazul Islam ◽  
Chengwu Huang ◽  
...  

AbstractIn this study functional ultrasound (fUS) imaging has been implemented to explore the local hemodynamic response induced by electrical epidural stimulation and to study real-time in vivo functional changes of the spinal cord, taking advantage of the superior spatiotemporal resolution provided by fUS. By quantifying the hemodynamic and electromyographic response features, we tested the hypothesis that the transient hemodynamic response of the spinal cord to electrical epidural stimulation could reflect modulation of the spinal circuitry and accordingly respond to the changes in parameters of electrical stimulation. The results of this study for the first time demonstrate that the hemodynamic response to electrical stimulation could reflect functional organization of the spinal cord. Response in the dorsal areas to epidural stimulation was significantly higher and faster compared to the response in ventral spinal cord. Positive relation between the hemodynamic and the EMG responses was observed at the lower frequencies of epidural stimulation (20 and 40 Hz), which according to our previous findings can facilitate spinal circuitry after spinal cord injury, compared to higher frequencies (200 and 500 Hz). These findings suggest that different mechanisms could be involved in spinal cord hemodynamic changes during different parameters of electrical stimulation and for the first time provide the evidence that functional organization of the spinal cord circuitry could be related to specific organization of spinal cord vasculature and hemodynamic.Significance StatementElectrical epidural stimulation (EES) has been successfully applied to control chronic refractory pain and was evolved to alleviate motor impairment after spinal cord injury, in Parkinson’s disease, and other neurological conditions. The mechanisms underlying the EES remain unclear, and current methods for monitoring EES are limited in sensitivity and spatiotemporal resolutions to evaluate functional changes in response to EES. We tested the hypothesis that the transient hemodynamic response of the spinal cord to EES could reflect modulation of the spinal cord circuitry and accordingly respond to the changes in parameters of EES. The proposed methodology opens a new direction for quantitative evaluation of the spinal cord hemodynamic in understanding the mechanisms of spinal cord functional organization and effect of neuromodulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan Greiner ◽  
Beatrice Barra ◽  
Giuseppe Schiavone ◽  
Henri Lorach ◽  
Nicholas James ◽  
...  

AbstractEpidural electrical stimulation (EES) of lumbosacral sensorimotor circuits improves leg motor control in animals and humans with spinal cord injury (SCI). Upper-limb motor control involves similar circuits, located in the cervical spinal cord, suggesting that EES could also improve arm and hand movements after quadriplegia. However, the ability of cervical EES to selectively modulate specific upper-limb motor nuclei remains unclear. Here, we combined a computational model of the cervical spinal cord with experiments in macaque monkeys to explore the mechanisms of upper-limb motoneuron recruitment with EES and characterize the selectivity of cervical interfaces. We show that lateral electrodes produce a segmental recruitment of arm motoneurons mediated by the direct activation of sensory afferents, and that muscle responses to EES are modulated during movement. Intraoperative recordings suggested similar properties in humans at rest. These modelling and experimental results can be applied for the development of neurotechnologies designed for the improvement of arm and hand control in humans with quadriplegia.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 372-375 ◽  
Author(s):  
J. R. Sutton ◽  
A. J. Thomas ◽  
G. M. Davis

Abstract:Electrical stimulation-induced leg muscle contractions provide a useful model for examining the role of leg muscle neural afferents during low-intensity exercise in persons with spinal cord-injury and their able-bodied cohorts. Eight persons with paraplegia (SCI) and 8 non-disabled subjects (CONTROL) performed passive knee flexion/extension (PAS), electrical stimulation-induced knee flexion/extension (ES) and voluntary knee flexion/extension (VOL) on an isokinetic dynamometer. In CONTROLS, exercise heart rate was significantly increased during ES (94 ± 6 bpm) and VOL (85 ± 4 bpm) over PAS (69 ± 4 bpm), but no changes were observed in SCI individuals. Stroke volume was significantly augmented in SCI during ES (59 ± 5 ml) compared to PAS (46 ± 4 ml). The results of this study suggest that, in able-bodied humans, Group III and IV leg muscle afferents contribute to increased cardiac output during exercise primarily via augmented heart rate. In contrast, SCI achieve raised cardiac output during ES leg exercise via increased venous return in the absence of any change in heart rate.


Sign in / Sign up

Export Citation Format

Share Document