scholarly journals Enhancing the Structural Strength for Injection Molding Tooling With Conformal Cooling Channels Using ANSYS Software

Author(s):  
Chil-Chyuan Kuo ◽  
Zheng-Yan You

Abstract Injection molding of wax patterns faces increasing demands for production rate. Proper thermal management of the injection molding tooling is capable of improving the production rate. Precise temperature control is a key to shorten the cooling time using the conformal cooling channels which are conformal to the molding cavity. However, the service life of the injection molding tooling with cooling channels will reduce significantly because the structural strength will reduce obviously. In this study, the feasibility of applying the increase in the mold thickness to maintain the structural strength of the injection molding tooling with cooling channels was verified through simulation and experiments conducted. It was found that the average variation between the results of simulation and the experiment is about 24.9%. The approximately amount of the increase in the thickness required for different diameters of cooling channels can be determined according to the trend equation of y=1.3429x-2.3429. The results can provide a reference for the conformal cooling channel design.

2007 ◽  
Vol 561-565 ◽  
pp. 1999-2002 ◽  
Author(s):  
Abul B.M. Saifullah ◽  
Syed H. Masood

Cooling channel design is important in mould designs to achieve shorter cycles, dimensional stability and reduced part stresses. Traditionally, cooling channels have been machined into mould components to avoid interference with the ejection system, coring, cavity and other mould details. Over the years straight drilled cooling channels have given away, in part, to conformal cooling technique often using free form fabrication techniques. This paper presents a study of optimised mould design with conformal cooling channel using finite element analysis. Various configurations of conformal cooling channels have been developed. The part cooling time using the conformal cooling channels and the straight cooling channels in the mould are computed using the Pro/Mechanica Thermal FEA software. Results are presented based on temperature distribution and cooling time using steady state and transient analysis conditions. The results show a reduction in cycle time for the plastic part with conformal cooling channel design.


2019 ◽  
Vol 9 (20) ◽  
pp. 4341 ◽  
Author(s):  
Chen-Yuan Chung

Plastic lenses are light and can be mass-produced. Large-diameter aspheric plastic lenses play a substantial role in the optical industry. Injection molding is a popular technology for plastic optical manufacturing because it can achieve a high production rate. Highly efficient cooling channels are required for obtaining a uniform temperature distribution in mold cavities. With the recent advent of laser additive manufacturing, highly efficient three-dimensional spiral channels can be realized for conformal cooling technique. However, the design of conformal cooling channels is very complex and requires optimization analyses. In this study, finite element analysis is combined with a gradient-based algorithm and robust genetic algorithm to determine the optimum layout of cooling channels. According to the simulation results, the use of conformal cooling channels can reduce the surface temperature difference of the melt, ejection time, and warpage. Moreover, the optimal process parameters (such as melt temperature, mold temperature, filling time, and packing time) obtained from the design of experiments improved the fringe pattern and eliminated the local variation of birefringence. Thus, this study indicates how the optical properties of plastic lenses can be improved. The major contribution of present proposed methods can be applied to a mold core containing the conformal cooling channels by metal additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document