Optimum Cooling Channels Design and Thermal Analysis of an Injection Moulded Plastic Part Mould

2007 ◽  
Vol 561-565 ◽  
pp. 1999-2002 ◽  
Author(s):  
Abul B.M. Saifullah ◽  
Syed H. Masood

Cooling channel design is important in mould designs to achieve shorter cycles, dimensional stability and reduced part stresses. Traditionally, cooling channels have been machined into mould components to avoid interference with the ejection system, coring, cavity and other mould details. Over the years straight drilled cooling channels have given away, in part, to conformal cooling technique often using free form fabrication techniques. This paper presents a study of optimised mould design with conformal cooling channel using finite element analysis. Various configurations of conformal cooling channels have been developed. The part cooling time using the conformal cooling channels and the straight cooling channels in the mould are computed using the Pro/Mechanica Thermal FEA software. Results are presented based on temperature distribution and cooling time using steady state and transient analysis conditions. The results show a reduction in cycle time for the plastic part with conformal cooling channel design.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3115
Author(s):  
Abelardo Torres-Alba ◽  
Jorge Manuel Mercado-Colmenero ◽  
Juan De Dios Caballero-Garcia ◽  
Cristina Martin-Doñate

The paper presents a hybrid cooling model based on the use of newly designed fluted conformal cooling channels in combination with inserts manufactured with Fastcool material. The hybrid cooling design was applied to an industrial part with complex geometry, high rates of thickness, and deep internal concavities. The geometry of the industrial part, besides the ejection system requirements of the mold, makes it impossible to cool it adequately using traditional or conformal standard methods. The addition of helical flutes in the circular conformal cooling channel surfaces generates a high number of vortexes and turbulences in the coolant flow, fostering the thermal exchange between the flow and the plastic part. The use of a Fastcool insert allows an optimal transfer of the heat flow in the slender core of the plastic part. An additional conformal cooling channel layout was required, not for the cooling of the plastic part, but for cooling the Fastcool insert, improving the thermal exchange between the Fastcool insert and the coolant flow. In this way, it is possible to maintain a constant heat exchange throughout the manufacturing cycle of the plastic part. A transient numerical analysis validated the improvements of the hybrid design presented, obtaining reductions in cycle time for the analyzed part by 27.442% in comparison with traditional cooling systems. The design of the 1 mm helical fluted conformal cooling channels and the use of the Fastcool insert cooled by a conformal cooling channel improves by 4334.9% the thermal exchange between the cooling elements and the plastic part. Additionally, it improves by 51.666% the uniformity and the gradient of the temperature map in comparison with the traditional cooling solution. The results obtained in this paper are in line with the sustainability criteria of green molds, centered on reducing the cycle time and improving the quality of the complex molded parts.


Author(s):  
Jae Hyuk Choi ◽  
Jin Su Kim ◽  
Eun Su Han ◽  
Hyung Pil Park ◽  
Byung Ohk Rhee

Since the 3D printing technology was applied to metallic materials, the conformal cooling channel has been widely utilized for injection mold with a higher cooling efficiency. The conformal cooling channel provides higher degree of freedom in shape and size. It is more effective to apply it to convex core accumulating more heat than the concave side. However, there has not been a standard design method for the conformal cooling channel. Depending upon channel design, the cooling efficiency would not be improved. Sometimes dead flow zones could be made in the channel. Currently every engineer makes the cooling channel design of his own. In this work, we proposed an automated optimum design method for the conformal cooling channel. In the proposed design method, whole product surface is divided into smaller domains with equal thermal energy by Voronoi diagram algorithm. Then cooling channels are installed along the centers of the domains by a binary branching algorithm. The objective of the optimization was the minimization of the product surface temperature deviation. The cooling channels are branching out over the product surface through the evolutionary steps until the objective was satisfied. The injection molding CAE analysis was done by Moldflow, and the optimization by PIAnO. The sample product was an eye-glass lens product.


2010 ◽  
Vol 654-656 ◽  
pp. 1646-1649 ◽  
Author(s):  
Abul B.M. Saifullah ◽  
Syed H. Masood ◽  
Igor Sbarski

One of the most important aspects of mould design in injection moulding is the provision of suitable and adequate cooling arrangements. Proper cooling channel design in the mould is an important aspect as it affects cycle time and quality of the injection moulded plastic part. A new cooling channel design with copper tube insert can reduce cycle time by optimal and uniform heat transfer in the mould. In this research work a comprehensive FEA transient thermal-structural analysis has been performed with ANSYS simulation software to understand robustness and longevity of an industrial plastic part mould with these cooling channels and compared with conventional straight cooling channels. Autodesk Moldflow Insight (AMI) also has been used to get essential process parameter values for analysis. Result shows that by inserting copper tube in the cooling channels, a mould can increase cooling efficiency and can last for higher number of cycles before fatigue failure, thus increasing production rate.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1224
Author(s):  
Chil-Chyuan Kuo ◽  
Wei-Hua Chen

Silicone rubber mold (SRM) is capable of reducing the cost and time in a new product development phase and has many applications for the pilot runs. Unfortunately, the SRM after injection molding has a poor cooling efficiency due to its low thermal conductivity. To improve the cooling efficiency, the thermal conductivity of the SRM was improved by adding fillers into the SRM. An optimal recipe for fabricating a high cooling efficiency low-pressure injection mold with conformal cooling channel fabricated by fused deposition modeling technology was proposed and implemented. This study proposes a recipe combining 52.6 wt.% aluminum powder, 5.3 wt.% graphite powder, and 42.1 wt.% liquid silicon rubber can be used to make SRM with excellent cooling efficiency. The price–performance ratio of this SRM made by the proposed recipe is around 55. The thermal conductivity of the SRM made by the proposed recipe can be increased by up to 77.6% compared with convention SRM. In addition, the actual cooling time of the injection molded product can be shortened up to 69.1% compared with the conventional SRM. The actual cooling time obtained by the experiment is in good agreement with the simulation results with the relative error rate about 20%.


Author(s):  
Shaohua Han ◽  
Zhongzhong Zhang ◽  
Pengxiang Ruan ◽  
Shiwen Cheng ◽  
Dingqi Xue

Additive manufacturing has been proven to be a promising technology for fabricating high-performance dies, molds, and conformal cooling channels. As one of the manufacturing methods, wire and arc additive manufacturing displays unique advantages of low cost and high deposition rate that are better than other high energy beam-based ones. This paper presents a preliminary study of fabricating integrated cooling channels by CMT-based wire and arc additive manufacturing process. The deposition strategies for fabricating circular cross-sectional cooling channels both in conformal and straight-line patterns have been investigated. It included optimizing the welding torch angle, fabricating the enclosed semicircle structure and predicting the collision between the torch and constructed part. The cooling effect test was also conducted on both the conformal cooling channel and straight-line cooling channel. The results affirmed a higher cooling efficiency and better uniform cooling effect of the conformal cooling channel than straight-line cooling channel.


2020 ◽  
Vol 26 (10) ◽  
pp. 1827-1836
Author(s):  
Christopher Gottlieb Klingaa ◽  
Sankhya Mohanty ◽  
Jesper Henri Hattel

Purpose Conformal cooling channels in additively manufactured molds are superior over conventional channels in terms of cooling control, part warpage and lead time. The heat transfer ability of cooling channels is determined by their geometry and surface roughness. Laser powder bed fusion manufactured channels have an inherent process-induced dross formation that may significantly alter the actual shape of nominal channels. Therefore, it is crucial to be able to predict the expected surface roughness and changes in the geometry of metal additively manufactured conformal cooling channels. The purpose of this paper is to present a new methodology for predicting the realistic design of laser powder bed fusion channels. Design/methodology/approach This study proposes a methodology for making nominal channel design more realistic by the implementation of roughness prediction models. The models are used for altering the nominal shape of a channel to its predicted shape by point cloud analysis and manipulation. Findings A straight channel is investigated as a simple case study and validated against X-ray computed tomography measurements. The modified channel geometry is reconstructed and meshed, resulting in a predicted, more realistic version of the nominal geometry. The methodology is successfully tested on a torus shape and a simple conformal cooling channel design. Finally, the methodology is validated through a cooling test experiment and comparison with simulations. Practical implications Accurate prediction of channel surface roughness and geometry would lead toward more accurate modeling of cooling performance. Originality/value A robust start to finish method for realistic geometrical prediction of metal additive manufacturing cooling channels has yet to be proposed. The current study seeks to fill the gap.


2021 ◽  
Author(s):  
Chil-Chyuan Kuo ◽  
Zheng-Yan You

Abstract Injection molding of wax patterns faces increasing demands for production rate. Proper thermal management of the injection molding tooling is capable of improving the production rate. Precise temperature control is a key to shorten the cooling time using the conformal cooling channels which are conformal to the molding cavity. However, the service life of the injection molding tooling with cooling channels will reduce significantly because the structural strength will reduce obviously. In this study, the feasibility of applying the increase in the mold thickness to maintain the structural strength of the injection molding tooling with cooling channels was verified through simulation and experiments conducted. It was found that the average variation between the results of simulation and the experiment is about 24.9%. The approximately amount of the increase in the thickness required for different diameters of cooling channels can be determined according to the trend equation of y=1.3429x-2.3429. The results can provide a reference for the conformal cooling channel design.


Sign in / Sign up

Export Citation Format

Share Document