scholarly journals Dynamics and synchronization of the complex simplified Lorenz system

Author(s):  
Mengxin Jin ◽  
Kehui Sun ◽  
Huihai Wang

Abstract In this paper, the complex simplified Lorenz system is proposed. It is the complex extension of the simplified Lorenz system. Dynamics of the proposed system are investigated by theoretical analysis as well as numerical simulation, including bifurcation diagram, Lyapunov exponent spectrum, phase portraits, Poincaré section, and basins of attraction. The results show that the complex simplified Lorenz system has non-trivial circular equilibria and displays abundant and complicated dynamical behaviors. Particularly, the coexistence of infinitely many attractors, i.e., extreme multistability, is discovered in the proposed system. Furthermore, the adaptive complex generalized function projective synchronization between two complex simplified Lorenz systems with unknown parameter is achieved. Based on Lyapunov stability theory, the corresponding adaptive controllers and parameter update law are designed. The numerical simulation results demonstrate the effectiveness and feasibility of the proposed synchronization scheme. It provides a theoretical and experimental basis for the applications of the complex simplified Lorenz system.

2009 ◽  
Vol 20 (05) ◽  
pp. 789-797
Author(s):  
YONG-GUANG YU ◽  
HAN-XIONG LI ◽  
JUN-ZHI YU

This paper mainly investigated a hybrid function projective synchronization of two different chaotic systems. Based on the Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed. This technique is applied to achieve the synchronization between Lorenz and Rössler chaotic systems, and the synchronization of hyperchaotic Rössler and Chen systems. The numerical simulation results illustrate the effectiveness and feasibility of the proposed scheme.


Author(s):  
Fei Yu ◽  
Yun Song

The concept of complete switched generalized function projective synchronization (CSGFPS) in practical type is introduced and the CSGFPS of a class of hyperchaotic systems with unknown parameters and disturbance inputs are investigated. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of a class of hyperchaotic systems asymptotically synchronized up to a desired scaling function and the unknown parameters are also estimated. In numerical simulations, the scaling function factors discussed in this paper are more complicated. Finally, the hyperchaotic Lorenz and hyperchaotic Lü systems are taken, for example, and the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.


Open Physics ◽  
2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenwu Sun

AbstractFunction projective synchronization (FPS) of two novel hyperchaotic systems with four-scroll attractors which have been found up to the present is investigated. Adaptive control is employed in the situation that system parameters are unknown. Based on Lyapunov stability theory, an adaptive controller and a parameter update law are designed so that the two systems can be synchronized asymptotically by FPS. Numerical simulation is provided to show the effectiveness of the proposed adaptive controller and the parameter update law.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Gao ◽  
Chenghua Liang

A new four-dimensional hyperchaotic system is investigated. Numerical and analytical studies are carried out on its basic dynamical properties, such as equilibrium point, Lyapunov exponents, Poincaré maps, and chaotic dynamical behaviors. We verify the realizability of the new system via an electronic circuit by using Multisim software. Furthermore, a generalized function projective synchronization scheme of two different hyperchaotic systems with uncertain parameters is proposed, which includes some existing projective synchronization schemes, such as generalized projection synchronization and function projective synchronization. Based on the Lyapunov stability theory, a controller with parameters update laws is designed to realize synchronization. Using this controller, we realize the synchronization between Chen hyperchaotic system and the new system to verify the validity and feasibility of our method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiuchun Li ◽  
Jianhua Gu ◽  
Wei Xu

When the parameters of both drive and response systems are all unknown, an adaptive sliding mode controller, strongly robust to exotic perturbations, is designed for realizing generalized function projective synchronization. Sliding mode surface is given and the controlled system is asymptotically stable on this surface with the passage of time. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding controller is designed to ensure the occurrence of the sliding motion. Finally, numerical simulations are presented to verify the effectiveness and robustness of the proposed method even when both drive and response systems are perturbed with external disturbances.


Sign in / Sign up

Export Citation Format

Share Document