scholarly journals Manure Applications Combined With Chemical Fertilizer Improves Soil Functionality, Microbial Biomass and Rice Production in a Paddy Field

Author(s):  
Anas Iqbal ◽  
Liang He ◽  
Steven G McBride ◽  
Izhar Ali ◽  
Kashif Akhtar ◽  
...  

Abstract Synthetic fertilizer with organic fertilizer (OF) is an approach for the improvement of soil health and quality without compromising crop yield. Therefore, a two-year field experiment was conducted to explore optimal chemical fertilizer (CF) management strategies in the context of OF, such as cattle manure (CM) and poultry manure (PM) fertilization to Ultisol soil to improve soil microbial biomass production, enzyme activities and nutrient contents, as well as grain yield of rice. A total of six treatments in the following combinations were used: i.e., T1— CF0; T2—100% CF; T3—60% CM + 40% CF; T4—30% CM + 70%CF; T5—60% PM + 40% CF, and T6—30% PM + 70% CF. Results showed that the combined fertilization significantly increased soil enzymatic activities such as soil invertase, acid phosphatase, urease, catalase, ꞵ-glucosidase, and cellulase as compared to sole CF application. Similarly, the integrated manure and inorganic fertilizers led to significant increases in soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil pH, soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorous (AP) and grain yield of rice. Average increases in soil MBC, MBN, SOC AN, and AP in the 0–20 cm soil depth were 62.2%, 54.5%, 29.2%, 17.4%, and 19.8%, respectively, across the years in treatment T3 compared with T2. Interestingly, the linear regression analysis displayed that soil enzymatic activities were highly positively correlated with MBC and MBN. Furthermore, the PCA exhibited that the improved soil enzyme activities and microbial biomass production played a key role in the higher grain yield of rice. Overall, the results of this study demonstrate that the combined use of CF and OF in paddy soil could be beneficial for the farmers in southern China by improving soil functionality and yield of rice on a sustainable basis.

2020 ◽  
Vol 54 (3 (253)) ◽  
pp. 235-245
Author(s):  
K.A. Ghazaryan ◽  
H.S. Movsesyan

The aim of this study was to define a relationship between heavy metal (Cu, Mo) pollution of soil and various extracellular enzyme activities. Six enzymatic activities involved in cycles of carbon, nitrogen, phosphorus and sulfur (β-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase, alkaline phosphomonoesterase, and arylsulphatase) as well as microbial biomass were determined in soil samples collected in the surroundings of Zangezur Copper and Molybdenum Combine. The investigations showed that pollution of soil with copper and molybdenum led to a decrease in microbial biomass and soil enzymatic activity, which in turn had a negative impact on cycles of chemical elements, in particular C, P, N and S. This gives reason to conclude that the changes in soil microbial biomass and enzymatic activity may act as indicators of soil biological activity and quality.


2020 ◽  
Vol 8 (6) ◽  
pp. 811 ◽  
Author(s):  
Jie Xu ◽  
Bing Liu ◽  
Zhao-lei Qu ◽  
Yang Ma ◽  
Hui Sun

Soil microorganisms and extracellular enzymes play important roles in soil nutrient cycling. Currently, China has the second-largest area of eucalyptus plantations in the world. Information on the effects of eucalyptus age and species of trees on soil microbial biomass and enzyme activities, however, is limited. In this paper, the soil microbial biomass and enzyme activities were studied in eucalyptus plantations with different ages (1 and 5+ years) and species of trees (E. urophylla×E. grandis, E. camaldulens and E. pellita) in South China. The results showed that both plantation age and eucalyptus species could affect the total microbial biomass and fungal biomass, whereas the bacterial biomass was affected only by plantation age. The fungal biomass and the fungi-to-bacteria ratio significantly increased along with increasing plantation age. Similarly, the plantation age and eucalyptus species significantly affected the enzyme activities associated with carbon cycling (β-xylosidase, β-d-glucuronidase, β-cellobiosidase and β-glucosidase). The activities of β-d-glucuronidase and β-glucosidase were significantly higher in the E. camaldulens plantation. The enzymes involved in nitrogen (N-acetyl-glucosamidase) and sulfur (sulfatase) cycling were only affected by the eucalyptus plantation age and species, respectively. The results highlight the importance of the age and species of eucalyptus plantations on soil microbial activities.


2017 ◽  
Vol 37 (1) ◽  
Author(s):  
周嘉聪 ZHOU Jiacong ◽  
刘小飞 LIU Xiaofei ◽  
郑永 ZHENG Yong ◽  
纪宇皝 JI Yuhuang ◽  
李先锋 LI Xianfeng ◽  
...  

2016 ◽  
Vol 36 (18) ◽  
Author(s):  
何芳兰 HE Fanglan ◽  
金红喜 JIN Hongxi ◽  
王锁民 WANG Suoming ◽  
韩生慧 HAN Shenghui ◽  
曾荣 ZENG Rong ◽  
...  

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
赵盼盼 ZHAO Panpan ◽  
周嘉聪 ZHOU Jiacong ◽  
林开淼 LIN Kaimiao ◽  
林伟盛 LIN Weisheng ◽  
袁萍 YUAN Ping ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document