scholarly journals Next-Generation Sequencing Mutational Landscape and Clinical Features of Chinese Adults with Myeloproliferative Neoplasms

Author(s):  
Shuna Luo ◽  
Zanzan Wang ◽  
Xiaofei Xu ◽  
Lan Zhang ◽  
Shengjie Wang ◽  
...  

Abstract Background: Myeloproliferative neoplasms (MPNs) include three classical subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Since prefibrotic primary myelofibrosis (pre-PMF) was recognized as a separate entity in the 2016 revised classification of MPN, it has been a subject of debate among experts due to its indefinite diagnosis. However, pre-PMF usually has a distinct outcome compared with either ET or overt PMF. In this study, we examined the clinical, haematologic, genetic, and prognostic differences among pre-PMF, ET, and overt PMF.Methods: We retrospectively reviewed the clinical parameters, haematologic information, and genetic mutations of patients who were diagnosed with pre-PMF, ET, and overt PMF according to the WHO 2016 criteria using next-generation sequencing (NGS).Results: Pre-PMF patients exhibited higher leukocyte counts, higher LDH values, a higher frequency of splenomegaly, and a higher incidence of hypertension than ET patients. On the other hand, pre-PMF patients had higher platelet counts and haemoglobin levels than overt PMF patients. Molecular analysis revealed that the frequency of EP300 mutations was significantly increased in pre-PMF patients compared with ET and overt PMF patients. In terms of outcome, male sex, along with symptoms including MPN-10, anaemia, thrombocytopenia, and KMT2A and CUX1 mutations, indicated a poor prognosis for PMF patients.Conclusion: The results of this study indicated that comprehensive evaluation of BM features, clinical phenotypes, haematologic parameters, and molecular profiles is needed for the accurate diagnosis and treatment of ET, pre-PMF, and overt PMF patients.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4641-4641
Author(s):  
Lan Zhang ◽  
Xingnong Ye ◽  
Shengjie Wang ◽  
Keyi Jin ◽  
Shuna Luo ◽  
...  

Abstract Myeloproliferative neoplasms (MPNs) include three classical subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Since prefibrotic primary myelofibrosis (pre-PMF) was recognized as a separate entity in the 2016 revised classification of MPN, it has been a subject of debate among experts due to its indefinite diagnosis. However, pre-PMF usually has a distinct outcome compared with either ET or overt PMF. We conducted a retrospective study of MPN patients from October 2014 to June 2020 in the Fourth Affiliated Hospital of Zhejiang University. Patients who were diagnosed with ET, pre-PMF or overt-MF according to the 2016 WHO Classification were included. We reviewed the clinical parameters, haematologic information, and genetic mutations of patients using next-generation sequencing (NGS). Mutation screening was performed in 44 patients by next-generation sequencing techniques, 84 genes and 258 mutations were detected. JAK2 was the most frequently mutated gene (25/44, 56.82%), followed by TET2 (14/44, 31.82%), KMT2C (13/44, 29.55%), and ASXL1 (10/44, 23.73%) in MPN (Figure 1-A). The VAFs of all studied genes with mutation frequencies >10% are shown in Figure 1-B. Of the 20 patients with ET, 9 (45%) were positive for the JAK2 mutation, 5 (25%) carried FAT1, 5 (25%) carried KMT2C, and 4 (20%) carried CALR. Of the 5 patients with pre-PMF, 4 (80%) carried JAK2, 3 (60%) carried EP300, and 2 (40%) carried TET2. Of the 19 patients with overt PMF, 12 (63%) carried JAK2, 10 (53%) carried TET2, 7 (37%) carried ASXL1, and 6 (32%) carried KMT2C, as reported in Figure 2. The median follow-up was 36 months for ET, 42 months for pre-PMF, and 53 months for overt PMF. Overall survival between pre-PMF, overt PMF, and ET was significantly different (P<0.001), as shown in Figure 3. During the follow-up time, only one death of ET was registered, so we analysed the impact of clinical parameters and mutational status at diagnosis on outcome in PMF, including pre-PMF and overt PMF. We performed Kaplan-Meier curves to examine the relationships between the clinical parameters and patient survival. We found that male sex (P=0.0107), MPN10 symptoms (P=0.0354), anaemia (haemoglobin<120g/L, P=0.0239), and thrombocytopenia (platelet count <100 ×10 9/L, P=0.0002) were significantly related to inferior OS (Figure 4). Pre-PMF patients exhibited higher leukocyte counts, higher LDH values, a higher frequency of splenomegaly, and a higher incidence of hypertension than ET patients. On the other hand, pre-PMF patients had higher platelet counts and haemoglobin levels than overt PMF patients. Molecular analysis revealed that the frequency of EP300 mutations was significantly increased in pre-PMF patients compared with ET and overt PMF patients. In terms of outcome, male sex, along with symptoms including MPN10, anaemia, thrombocytopenia, and KMT2A and CUX1 mutations, indicated a poor prognosis for PMF patients. In conclusion, we identified differences in the clinical, haematologic, and molecular presentations of ET, pre-PMF, and overt PMF patients, indicating that comprehensive evaluation of not only BM features but also clinical, haematologic, and molecular profiles is needed for accurate diagnosis and treatment of these three disease entities. The molecular analysis revealed that pre-PMF might be relevant to EP300 mutation, demonstrating the value of molecular examination. The results of this study indicated that comprehensive evaluation of BM features, clinical phenotypes, haematologic parameters, and molecular profiles is needed for the accurate diagnosis and treatment of ET, pre-PMF, and overt PMF patients. Acknowledgment:The research was supported by the Public Technology Application Research Program of Zhejiang, China (LGF21H080003), the Key Project of Jinhua Science and Technology Plan, China (2020XG-29 and 2020-3-011), the Academician Workstation of the Fourth Affiliated Hospital of the Zhejiang University School of Medicine (2019-2024), the Key Medical Discipline of Yiwu, China (Hematology, 2018-2020) and the Key Medical Discipline of Jinhua, China (Hematology, 2019-2021). Correspondence to: Dr Jian Huang, Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine. N1 Shangcheng Road. Yiwu, Zhejiang, Peoples R China. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3049-3049
Author(s):  
Michelina Santopietro ◽  
Giovanna Palumbo ◽  
Maria Luisa Moleti ◽  
Anna Maria Testi ◽  
Luisa Cardarelli ◽  
...  

Abstract Driver mutations of JAK2, CALR and MPL are found in >90% of adults with BCR-ABL1-negative myeloproliferative neoplasms (MPN). In children, the presence of clonal markers ranges between 22 and 40%, and inherited forms of MPD, such as familial erythrocytosis (FE) and hereditary thrombocytosis (HT), are common. Data on the mutational spectrum and biology of childhood MPD are limited. The aims of this study were: a) to evaluate the ability of a next-generation sequencing (NGS)-based 44-gene analysis to better characterize wild type (WT) MPD, and b) to identify non-canonical and/or non-driver mutations in children and adolescents with MPD. Eighty patients (pts) aged ≤20 years (yrs) at diagnosis of MPD, observed between June 1980 and September 2015, were first investigated with standardized methods for driver mutations of MPN (JAK, MPL, CALR), for genes involved in FE (HRE, EpoR, HIF2α, HIF1α, VHL, PHD1-3, STAT5, LNK, TET2) and HT (THPO, MPL, LNK and TET2). Then, a 44-gene panel providing diagnostic information in myeloid malignancies and in rare inherited erythrocytosis/thrombocytosis (JAK2, CALR, MPL, ASXL1, CBL, C-Kit, CSF3R, CUX1, DNMT3A, ETNK1, EZH2, IDH1, IDH2, IKZF1, KRAS, LNK, NFE2, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, ZRSR2, BPGM, EGLN1 (PHD2), EPAS1 (HIF2A), EPOR, GATA1, GELSOLIN, HBA1, HBA2, HBB, JAK2,MPL, RUNX1, SH2B3, SRC, THPO, VHL, WAS) was employed to better characterize these diseases. Sequencing analyses of DNA from mononuclear peripheral blood cells were performed in 57/80 pts. Eighty pts (M 41, F 39; median age at diagnosis: 149/12 yrs, range 3 months-1911/12 yrs), investigated by standardized methods, were retrospectively classified according to the WHO 2016 criteria as follows: 35 essential thrombocythemia (ET) (10 JAK2V617F, 2 CALR type1, 6 CALR type2, 1 CALR atypical, 16 WT), 9 polycythemia vera (PV) (4 JAK2V617F, 5 WT) and 3 primary myelofibrosis (PMF) (1 JAK2V617F, 2 WT). Twenty-three pts with MPLS505N or MPLV501A mutations and 10 pts with HIF mutations (3 pts) and/or anamnestic criteria of FE (7 WT) were considered HT and FE, respectively. The NGS-based 44-gene panel was applied to 57 MPD pts (11 JAK2V617F, 6 CALR, 12 MPLS505N, 2 MPLV501A, 3 HIF2α and 23 WT). According to the WHO 2016 criteria, 27 pts were ET, 14 HT, 8 FE, 7 PV and 1 PMF. By using the NGS panel, clonal markers were found in 12/23 (52%) pts with MPN WT: HBB and PDH2 in 2 FE, MPLW515_P518>KT in 1 ET pt and non-driver mutations in 9 pts (7 ET, 1 PF and 1 PV). Furthermore, two non-canonical driver mutations, MPLC322G and JAK2G301R were identified in 1 CALR type2 ET and in 1 JAK2V617FPV, respectively. An additional MPLV501M mutation was found in 1 MPLS505N HT. Taken together, among the 57 pts 18 (32%) had one (11/18=68%) or two (7/18=39%) non-driver mutations. Eight of the 34 pts (23.5%) with a clonal marker had additional non-driver mutations, that was single in 6 pts. Within the familial MPD, a single non-driver mutation was found in 3/8 FE pts (37.5%), while no mutations were detected in HT pts. Considering the functional classification of non-driver mutations, we found mutations in signaling (CBL, LNK/SH2B3, CSF3R, KIT, SETBP1) and splicing (U2AF1, ZRSR2) genes in ET and PMF pts, and mutations of epigenetic regulation genes (TET2, ASXL1, DNMT3A) in PV, FE and ET pts (Table 1). The co-occurrence of driver and non-driver mutations in the same individual is illustrated in the circos plot (Figure 1). The use of a NGS-based 44-gene panel in acquired and familial pediatric MPD enabled to identify driver and non-driver mutations, not otherwise detected by conventional methods, with a substantial proportion of MPD pts (81%) showing mutations in the genes analyzed. Interestingly, we found additional neoplastic mutations in some pts with FE. Although the utilized NGS-based panel proved useful to better characterize children and adolescents with MPD, 19% of our pts still remain without any identified clonal marker. Further targeted NGS and whole genome sequencing may enable to better define MPD children without molecular markers. Disclosures Malaspina: Sapienza University, Rome: Other: Resident in Hematology. Foà:ABBVIE: Other: ADVISORY BOARD, Speakers Bureau; CELGENE: Other: ADVISORY BOARD, Speakers Bureau; AMGEN: Other: ADVISORY BOARD; INCYTE: Other: ADVISORY BOARD; NOVARTIS: Speakers Bureau; ROCHE: Other: ADVISORY BOARD, Speakers Bureau; GILEAD: Speakers Bureau; JANSSEN: Other: ADVISORY BOARD, Speakers Bureau; CELTRION: Other: ADVISORY BOARD.


2014 ◽  
Vol 32 (15_suppl) ◽  
pp. 1555-1555
Author(s):  
Antonios Papanicolau-Sengos ◽  
Edward Hart ◽  
Wei Shen ◽  
Kenneth F. Grossmann ◽  
Cecily Vaughn ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4076-4076
Author(s):  
Song Jinming ◽  
Mohammad Omar Hussaini ◽  
Haipeng Shao ◽  
Eric Padron ◽  
Jeffrey E Lancet ◽  
...  

Abstract Background: Primary myelofibrosis (PMF) and polycythemia vera (PV) are myeloproliferative neoplasms (MPN) that can both share a similar bone marrow morphology with panmyelosis and fibrosis, posing a diagnostic challenge, particularly when the differential is between cellular phase of PMF and PV, or fibrotic PMF and post-PV myelofibrosis. Despite advances in genomic analysis, limited information is known regarding their differences in genetic profile/signature. It has been well known that constitutive tyrosine kinase activation due to JAK2 V617F mutation is seen in both PV and PMF. MPL and CALR mutations do segregate with PMF but may not be found in all cases. Accordingly, we analyzed next generation sequencing (NGS) data to look for potential biomarkers that may further aid in distinguishing these two entities. Design: The IRB approved study intended to recruit patients with diagnosis of PMF and PV who have myeloid gene mutation profiles available. Clinical information and molecular data from both a CLIA certified reference laboratory and our institution from May 2011 to June 2015 were retrieved. Cases with other myeloid neoplasms were excluded. The gene mutation profiles by Next Generation sequencing (NGS) and conventional karyotyping were acquired and compared. Clinicopathologic features including disease progression, degree of fibrosis in bone marrow, percentage of blasts, bone marrow cellularity, and circulating blood count (CBC) are correlated. Student t-test was used for numerical variables and Chi square (x2) test was used for categorical variables. Results: Of the 62 patients qualified in the study, 36 patients were diagnosed with PMF (Age 68.5 ± 12.2, M:F ratio of 1:1) and 26 patients with PV (Age 66.5 ± 11.9, M:F ratio of 1.6). The majority of patients (34/36 PMF and 26/26 PV) showed persistent disease with only two PMF patients progressing to acute myeloid leukemia (AML). In accordance with prior reports, JAK2 V617F mutation was more prevalent in PV (23/26, 88%) than in PMF (17/36, 47%)(p<0.05), while MPL mutation was found in PMF (5/36, 14%) but not in PV (0/26) (p<0.001). Overall, PMF patients tended to have more non JAK2 mutations (mean = 1.6 ± 1) than PV patients (mean= 0.54 ± 0.65) (p = 0.005), even though the PV patients tended to have a longer history of disease. Interestingly, ASXL1 mutations (mainly frame-shift, reportedly pathologic) appear to be more prevalent in PMF (28%) than in PV (8%) patients (p = 0.058). SRSF2 mutations were found in 14% of PMF patients but absent in all 26 PV patients (p=0.068). Mutations in a subset of other analyzed genes (TET2, EZH2, IDH2, and CUX1) were also more frequent in PMF than in PV patients (25% vs 15%, 8% vs 0%, 8% vs 0%, and 6% vs 0%, respectively), but not statistically significant due to limited number of cases. The highest number of mutations (n=4) was in a case of PMF that progressed to AML, suggesting a 'dosage' effect of driver mutations on outcomes similar to that described in MDS. The other patient that progressed from PMF to AML harbored JAK2, ASXL1, SRSF2 mutations along with del(20q). ASXL1 mutation was associated with del(20q) in 4/62 cases, all of which were PMF patients including the case that has progressed to AML. JAK2 mutation was associated with del(20q) in 7 out of the 62 cases, 6 (86%) of which were PMF patients. No gene mutations were uniquely associated with degree of fibrosis, blast count, cellularity, white blood cell counts, hemoglobin, or platelet counts. Conclusion: Our results indicate that PMF patients tend to have more non JAK2 mutations (e.g., ASXL1, SRSF2) than PV. Furthermore, the mutations, including JAK2 mutations, are more likely to be associated with del(20q) in PMF patients. Our findings provide insight into the genetic landscape of PMF and PV and offer potential biomarkers that may be helpful to distinguish between these entities, thus benefiting patient stratification for clinical practice. Disclosures Lancet: Seattle Genetics: Consultancy; Pfizer: Research Funding; Boehringer-Ingelheim: Consultancy; Kalo-Bios: Consultancy; Amgen: Consultancy; Celgene: Consultancy, Research Funding. Komrokji:Celgene: Consultancy, Research Funding; Incite: Consultancy; Novartis: Speakers Bureau; GSK: Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1947
Author(s):  
Alessandro Liquori ◽  
Iván Lesende ◽  
Laura Palomo ◽  
Gayane Avetisyan ◽  
Mariam Ibáñez ◽  
...  

Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms are clonal disorders that share most of their cytogenetic and molecular alterations. Despite the increased knowledge of the prognostic importance of genetics in these malignancies, next-generation sequencing (NGS) has not been incorporated into clinical practice in a validated manner, and the conventional karyotype remains mandatory in the evaluation of suspected cases. However, non-informative cytogenetics might lead to an inadequate estimation of the prognostic risk. Here, we present a novel targeted NGS-based assay for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this platform in a large cohort of patients by performing a one-to-one comparison with the lesions from karyotype and single-nucleotide polymorphism (SNP) arrays. Our strategy demonstrated an approximately 97% concordance with standard clinical assays, showing sensitivity at least equivalent to that of SNP arrays and higher than that of conventional cytogenetics. In addition, this NGS assay was able to identify both copy-neutral loss of heterozygosity events distributed genome-wide and copy number alterations, as well as somatic mutations within significant driver genes. In summary, we show a novel NGS platform that represents a significant improvement to current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorders.


Sign in / Sign up

Export Citation Format

Share Document