Study of the Parametric Effects on Soliton Propagation in Optical Fibers through Two Analytical Methods

Author(s):  
Md. Ekramul Islam ◽  
M. Ali Akbar

Abstract The dual-core optical fiber has significant applications in optical electronics for long-wave propagation, especially in telecommunication fibers. The aim of this article is to study the parametric effects on solitary wave propagation and characteristic aspects of long-wave traveling through optical fibers by establishing some standard and wide-spectrum solutions via the improved Bernoulli sub-equation function (IBSEF) method and the new auxiliary equation (NAE) approach. The investigated solitary wave solutions are ascertained as an integration of hyperbolic, exponential, rational and trigonometric functions and can be extensively applicable in optics. The physical significance of the solutions attained is illustrated for the definite values of the included parameters through depicting the 3D profiles. The solitons profile represents different types of waves associated with the free parameters which are related to the wave number and velocity of the solutions. It turns out that the obtained solutions through both the methods are potential and might be used in further works to interpret the various fields in telecommunication fiber which can reduce casualties that ensue in essence.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 896-909 ◽  
Author(s):  
Dianchen Lu ◽  
Aly R. Seadawy ◽  
Mujahid Iqbal

AbstractIn this research work, for the first time we introduced and described the new method, which is modified extended auxiliary equation mapping method. We investigated the new exact traveling and families of solitary wave solutions of two well-known nonlinear evaluation equations, which are generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified forms of Camassa-Holm equations. We used a new technique and we successfully obtained the new families of solitary wave solutions. As a result, these new solutions are obtained in the form of elliptic functions, trigonometric functions, kink and antikink solitons, bright and dark solitons, periodic solitary wave and traveling wave solutions. These new solutions show the power and fruitfulness of this new method. We can solve other nonlinear partial differential equations with the use of this method.


Author(s):  
Amir-Reza Asghari Ardalani ◽  
Ahad Amiri ◽  
Roohollah Talebitooti ◽  
Mir Saeed Safizadeh

Wave dispersion response of a fluid-carrying piezoelectric nanotube is studied in this paper utilizing an improved model for piezoelectric materials which capture a new effect known as flexoelectricity in conjunction with the surface elasticity. For this aim, a higher order shear deformation theory is employed to model the problem. Furthermore, strain gradient effect as well as nonlocal effect is taken into consideration throughout using the nonlocal strain gradient theory (NSGT). Surface elasticity is also considered to make an accurate size-dependent formulation. Additionally, a non-compressible and non-viscous fluid is taken into consideration to model the flow effect. The wave propagation solution is then implemented to the governing equations obtained by Hamiltonian’s approach. The phase velocity and group velocity of the nanotube is determined for three wave modes (i.e. shear, longitudinal and bending waves) to study the influence of various involved factors including strain gradient, nonlocality, flexoelectricity and surface elasticity and flow velocity on the wave dispersion curves. Results reveal a considerable effect of the flexoelectric phenomenon on the wave propagation properties especially at a specific domain of the wave number. The size-dependency of this effect is disclosed. Overall, it is found that the flexoelectricity exhibits a substantial influence on wave dispersion properties of the smart fluid-conveying systems. Hence, such size-dependent effect should be considered to achieve exact and accurate knowledge on wave propagation characteristics of the system.


Sign in / Sign up

Export Citation Format

Share Document