scholarly journals Automatic COVID-19 Detection from X-Ray images using Ensemble Learning with Convolutional Neural Network

2020 ◽  
Author(s):  
Amit Kumar Das ◽  
Sayantani Ghosh ◽  
Samiruddin Thunder ◽  
Rohit Dutta ◽  
Sachin Agarwal ◽  
...  

Abstract Covid-19 continues to have catastrophic effects on the lives of human beings throughout the world. To combat this disease it is necessary to screen the affected patients in a fast and inexpensive way. One of the most viable steps towards achieving this goal is through radiological examination, Chest X-Ray being the most easily available and least expensive option. In this paper we have proposed a Deep Convolutional Neural Network based solution which can detect the Covid-19 +ve patients using chest X-Ray images. To test the efficacy of the solution we have used publicly available chest X-ray images of Covid +ve and -ve cases. 538 images of Covid +ve patients and 468 images of Covid -ve patients have been divided into 771 trainable images and 235 testing images. Our solution gave a classification accuracy of 95.7% and sensitivity of 98% in the test set-up. We have developed a GUI application for public use. This application can be used on any computer by any medical personnel to detect Covid +ve patients using Chest X-Ray images within a very few seconds.

Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Hossein Aboutalebi ◽  
Maya Pavlova ◽  
Mohammad Javad Shafiee ◽  
Ali Sabri ◽  
Amer Alaref ◽  
...  

The world is still struggling in controlling and containing the spread of the COVID-19 pandemic caused by the SARS-CoV-2 virus. The medical conditions associated with SARS-CoV-2 infections have resulted in a surge in the number of patients at clinics and hospitals, leading to a significantly increased strain on healthcare resources. As such, an important part of managing and handling patients with SARS-CoV-2 infections within the clinical workflow is severity assessment, which is often conducted with the use of chest X-ray (CXR) images. In this work, we introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient’s chest. More specifically, we leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 SARS-CoV-2 positive and negative patient cases into a custom network architecture for severity assessment. Experimental results using the RSNA RICORD dataset showed that the proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients. Furthermore, radiologist validation on select cases by two board-certified radiologists with over 10 and 19 years of experience, respectively, showed consistency between radiologist interpretation and critical factors leveraged by COVID-Net CXR-S for severity assessment. While not a production-ready solution, the ultimate goal for the open source release of COVID-Net CXR-S is to act as a catalyst for clinical scientists, machine learning researchers, as well as citizen scientists to develop innovative new clinical decision support solutions for helping clinicians around the world manage the continuing pandemic.


2021 ◽  
Author(s):  
Hossein Aboutalebi ◽  
Maya Pavlova ◽  
Mohammad Javad Shafiee ◽  
Ali Sabri ◽  
Amer Alaref ◽  
...  

Abstract The world is still struggling in controlling and containing the spread of the COVID-19 pandemic caused by the SARS-CoV-2 virus. The medical conditions associated with SARS-CoV-2 infections have resulted in a surge in the number of patients at clinics and hospitals, leading to a significantly increased strain on healthcare resources. As such, an important part of managing patients with SARS-CoV-2 infections within the clinical workflow is severity assessment, which is often conducted with the use of chest x-ray (CXR) images. In this work, we introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest. More specifically, we leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment. Experimental results with a multi-national patient cohort curated by the Radiological Society of North America (RSNA) RICORD initiative showed that the proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients. Furthermore, radiologist validation on select cases by two board-certified radiologists with over 10 and 19 years of experience, respectively, showed consistency between radiologist interpretation and critical factors leveraged by COVID-Net CXR-S for severity assessment. While not a production-ready solution, the ultimate goal for the open source release of COVID-Net CXR-S is to act as a catalyst for clinical scientists, machine learning researchers, as well as citizen scientists to develop innovative new clinical decision support solutions for helping clinicians around the world manage the continuing pandemic.


2021 ◽  
Vol 232 ◽  
pp. 107494
Author(s):  
Junding Sun ◽  
Xiang Li ◽  
Chaosheng Tang ◽  
Shui-Hua Wang ◽  
Yu-Dong Zhang

Sign in / Sign up

Export Citation Format

Share Document