scholarly journals Incremental Method of Generating Decision Implication Canonical Basis

Author(s):  
Shaoxia Zhang ◽  
Deyu Li ◽  
Yanhui Zhai

Abstract Decision implication is an elementary representation of decision knowledge in formal concept analysis. Decision implication canonical basis (DICB), a set of decision implications with completeness and nonredundancy, is the most compact representation of decision implications. The method based on true premises (MBTP) for DICB generation is the most efficient one at present. In practical applications, however, data is always changing dynamically, and MBTP has to re-generate inefficiently the whole DICB. This paper proposes an incremental algorithm for DICB generation, which obtains a new DICB just by modifying and updating the existing one. Experimental results verify that when the samples in data are much more than condition attributes, which is actually a general case in practical applications, the incremental algorithm is significantly superior to MBTP. Furthermore, we conclude that, even for the data in which samples is less than condition attributes, when new samples are continually added into data, the incremental algorithm must be also more efficient than MBTP, because the incremental algorithm just needs to modify the existing DICB, which is only a part of work of MBTP.

2020 ◽  
Author(s):  
Yoshiaki Okubo

In this paper, we present a method of finding conceptual clusters of music objects based on Formal Concept Analysis. A formal concept (FC) is defined as a pair of extent and intent which are sets of objects and terminological attributes commonly associated with the objects, respectively. Thus, an FC can be regarded as a conceptual cluster of similar objects for which its similarity can clearly be stated in terms of the intent. We especially discuss FCs in case of music objects, called music FCs. Since a music FC is based solely on terminological information, we often find extracted FCs would not always be satisfiable from acoustic point of view. In order to improve their quality, we additionally require our FCs to be consistent with acoustic similarity. We design an efficient algorithm for extracting desirable music FCs. Our experimental results for The MagnaTagATune Dataset shows usefulness of the proposed method.


Author(s):  
Yi-Hui Chen ◽  
Eric Jui-Lin Lu ◽  
Ya-Wen Cheng

Most clustering algorithms build disjoint clusters. However, clusters might be overlapped because documents may belong to two or more categories in the real world. For example, a paper discussing the Apple Watch may be categorized into either 3C, Fashion, or even Clothing and Shoes. Therefore, overlapping clustering algorithms have been studied such that a resource can be assigned to one or more clusters. Formal Concept Analysis (FCA), which has many practical applications in information science, has been used in disjoin clustering, but has not been studied in overlapping clustering. To make overlapping clustering possible by using FCA, we propose an approach, including two types of transformation. From the experimental results, it shows that the proposed fuzzy overlapping clustering performed more efficiently than existing overlapping clustering methods. The positive results confirm the feasibility of the proposed scheme used in overlapping clustering. Also, it can be used in applications such as recommendation systems.


2014 ◽  
Vol 602-605 ◽  
pp. 3822-3825 ◽  
Author(s):  
Bo Chen ◽  
Jia Di Qiu ◽  
Ming Ming Chen

The need to securely share information among collaborating entities is increasingly becoming important. It often needed to implement access control (AC) models. The objective of this paper is to design access control policy using formal concept analysis, which is based on mathematical lattice and order theory. We provide discussion on how FCA can be used to capture RBAC constraints. We show with FCA, we can express more intend constrains than it can be done in traditional RBAC approach. The experimental results show that the approach is more resilient to dynamic computer environment.


2021 ◽  
Vol 179 (3) ◽  
pp. 295-319
Author(s):  
Longchun Wang ◽  
Lankun Guo ◽  
Qingguo Li

Formal Concept Analysis (FCA) has been proven to be an effective method of restructuring complete lattices and various algebraic domains. In this paper, the notion of contractive mappings over formal contexts is proposed, which can be viewed as a generalization of interior operators on sets into the framework of FCA. Then, by considering subset-selections consistent with contractive mappings, the notions of attribute continuous formal contexts and continuous concepts are introduced. It is shown that the set of continuous concepts of an attribute continuous formal context forms a continuous domain, and every continuous domain can be restructured in this way. Moreover, the notion of F-morphisms is identified to produce a category equivalent to that of continuous domains with Scott continuous functions. The paper also investigates the representations of various subclasses of continuous domains including algebraic domains and stably continuous semilattices.


2013 ◽  
Vol 760-762 ◽  
pp. 1708-1712
Author(s):  
Ying Fang Li ◽  
Ying Jiang Li ◽  
Yan Li ◽  
Yang Bo

At present, as the number of web services resources on the network drastically increased, how to quickly and efficiently find the needed services from publishing services has become a problem to resolve. Aiming at the problems of low efficiency in service discovery of traditional web service, the formal concept analysis ( FCA) is introduced into the semantic Web service matching, and a Matching Algorithm based semantic web service is proposed. With considering the concept of limited inheritance,this method introduces the concept of limited inheritance to the semantic similarity calculation based on the concept lattice. It is significant in enhancing the service function matching in practical applications through adjust the calculation.


2007 ◽  
Vol 158 (23) ◽  
pp. 2627-2640 ◽  
Author(s):  
Ming-Wen Shao ◽  
Min Liu ◽  
Wen-Xiu Zhang

Sign in / Sign up

Export Citation Format

Share Document