scholarly journals Multi-Objective Optimization and Finite Element Method Combined with Optimization via Monte Carlo Simulation in a Stamping Process under Uncertainty

Author(s):  
ANEIRSON FRANCISCO SILVA ◽  
Fernando Augusto Silva Marins ◽  
José Benedito da Silva Oliveira ◽  
Erica Ximenes Dias

Abstract The Response Surface Methodology (RSM), which uses a quadratic empirical function as an approximation to the original function and allows the identification of relationships between independent variables xi and dependent variables ys associated with multiple responses, stands out. The main contribution of the present study is to propose an innovative procedure for the optimization of experimental problems with multiple responses, which considers the insertion of uncertainties in the coefficients of the obtained empirical functions in order to adequately represent real situations. This new procedure, which combines RSM with the Finite Elements (FE) method and the Monte Carlo Simulation Optimization (OvMCS), was applied to a real stamping process of a Brazilian multinational automotive company. For RSM with multiple responses, were compared the results obtained using the agglutination methods: Compromise Programming, Desirability Function (DF), and the Modified Desirability Function (MDF). The functions were optimized by applying the Generalized Reduced Gradient (GRG) algorithm, which is a classic procedure widely adopted in this type of experimental problem, without the uncertainty in the coefficients of independent factors. The advantages offered by this innovative procedure are presented and discussed, as well as the statistical validation of its results. It can be highlighted, for example, that the proposed procedure reduces, and sometimes eliminates, the need for additional confirmation experiments, as well as a better adjustment of factor values and response variable values when comparing to the results of RSM with classic multiple responses. The new proposed procedure added relevant and useful information to the managers responsible for the studied stamping process. Moreover, the proposed procedure facilitates the improvement of the process, with lower associated costs.

2019 ◽  
Vol 173 ◽  
pp. 107776 ◽  
Author(s):  
Aneirson Francisco da Silva ◽  
Fernando Augusto Silva Marins ◽  
Erica Ximenes Dias ◽  
Jose Benedito da Silva Oliveira

Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document