scholarly journals Intron-Containing Hairpin RNA Interference Vector for OBP8 Show Promising Mortality in Peach Potato Aphid

Author(s):  
Amber Afroz ◽  
Safeena Aslam ◽  
Umer Rashid ◽  
Muhammad Faheem Malik ◽  
Nadia Zeeshan ◽  
...  

Abstract Myzus persicae is a devastating pest affecting potato production. RNA Interference technology is used against essential odorant binding protein 8 (OBP8) to enhance protection against Myzus persicae in potato. Gene was isolated, sequenced and GenBank IDs were allotted and ERNAi was used to design siRNA targets from OBP8 with no off-targets. Multiple Sequence Alignment show M. persicae OBP8 resemblance with Acyrthosiphon pisum, Rhopalosiphum maidis, Aphis fabae, and Sitobion avenae. DsRNA (7 µg/µl) oral acquisition had resulted in 69% mortality and 58% reduction in OBP8 expression 8D post dsRNA feeding in comparison to control. Golden Gate (GG) cloning based RNAigg is used for RNA interference taking advantage of type IIs restriction enzyme Eco31I. Agro infiltration assay was used for introduction of intron-containing hairpin RNA (ihpRNA) in Solanum tuberosum. Aphids feeding on transgenic S. tuberosum show 57.6% mortality and 49% reduction in OBP8 expression 8d post-feeding in comparison to control. This work proves OBP8 as promising ihpRNA targets in potato and related crops for whom Myzus is a devastating target.

Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 368 ◽  
Author(s):  
Mandrioli ◽  
Salvatore ◽  
Ferrari ◽  
Patelli ◽  
Manicardi

The availability of genomic data in the last decade relating to different aphid species has allowed the analysis of the genomic variability occurring among such species, whereas intra-specific variability has hitherto very largely been neglected. In order to analyse the intra-genomic variability in the peach potato aphid, Myzus persicae, comparative analyses were performed revealing several clone-specific gene duplications, together with numerous deletions/rearrangements. Our comparative approach also allowed us to evaluate the synteny existing between the two M. persicae clones tested and between the peach potato aphid and the pea aphid, Acyrthosiphon pisum. Even if part of the observed rearrangements are related to a low quality of some assembled contigs and/or to the high number of contigs present in these aphid genomes, our evidence reveals that aphid clones are genetically more different than expected. These results suggest that the choice of performing genomes sequencing combining different biotypes/populations, as revealed in the case of the soybean aphid, Aphis glycines, is unlikely to be very informative in aphids. Interestingly, it is possible that the holocentric nature of aphid chromosomes favours genome rearrangements that can be successively inherited transgenerationally via the aphid’s apomictic (parthenogenetic) mode of reproduction. Lastly, we evaluated the structure of the cluster of genes coding for the five histones (H1, H2A, H2B, H3 and H4) in order to better understand the quality of the two M. persicae genomes and thereby to improve our knowledge of this functionally important gene family.


Author(s):  
Amber Afroz ◽  
Safeena Aslam ◽  
Umer Rashid ◽  
Muhammad Faheem Malik ◽  
Nadia Zeeshan ◽  
...  

1977 ◽  
Vol 167 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Alan L. Devonshire

Carboxylesterases from different strains of Myzus persicae were examined to try to understand their contribution to insecticide resistance. Preliminary evidence that they are involved comes from the good correlation between the degree of resistance and the carboxylesterase and paraoxon-degrading activity in aphid homogenates. Furthermore the carboxylesterase associated with resistance could not be separated from the insecticide-degrading enzyme by electrophoresis or ion-exchange chromatography. Homogenates of resistant aphids hydrolysed paraoxon 60 times faster than did those of susceptible aphids, yet the purified enzymes from both sources had identical catalytic-centre activities towards this substrate and also towards naphth-1-yl acetate, the latter being hydrolysed by both 2×106 times faster than paraoxon. These observations provide evidence that the enzyme from both sources is identical, and that one enzyme hydrolyses both substrates. This was confirmed by relating the rate of paraoxon hydrolysis to the rate at which paraoxon-inhibited carboxylesterase re-activated. Both had the same first-order rate constant (0.01min−1), showing clearly that the hydrolysis of both substrates is brought about by the same enzyme. Its Km for naphth-1-yl acetate was 0.131mm, and for paraoxon 75pm. The latter very small value could not be measured directly, but was calculated from substrate-competition studies coupled with measurements of re-activation of the diethyl phosphorylated enzyme. Since the purified enzymes from resistant and susceptible aphids had the same catalytic-centre activity, the 60-fold difference between strains must be caused by different amounts of the same enzyme resulting from mutations of the regulator gene(s) rather than of the structural gene.


2008 ◽  
Vol 60 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Andja Vucetic ◽  
Olivera Petrovic-Obradovic ◽  
J. Margaritopoulos ◽  
P. Skouras

In two years of investigating resistance of the peach-potato aphid Myzus persicae (Sulzer) by molecular methods, several types of resistance were established in the majority of individuals from peach and tobacco in Serbia and Montenegro. Most of the tested individuals had the FE4 gene, which encodes production of FE4 esterase. The gene responsible for kdr (knock-down resistance) was found in the majority of individuals, but in the heterozygous state, while resistance based on formation of modified acetlycholinesterase (MACE) was least represented. Also, tests showed aphids from tobacco to be more sensitive to insecticide action than aphids from peach. Three tests were used in these investiga?tions, e.g., the PCR - esterase, PCR - kdr, and RFLP - PCR tests, each for a single type of resistance.


2004 ◽  
Vol 84 (3) ◽  
pp. 785-790 ◽  
Author(s):  
Jianhong Yao, Xiuyun Zhao ◽  
Huaxiong Qi, Bingliang Wan ◽  
Fei Chen, Xiaofen Sun ◽  
Shanqian Yu ◽  
Kexuan Tang

Tobacco leaf discs were transformed with a plasmid, pBIAHA, containing the selectable marker neomycin phosphotransferase gene (nptII) and an Arisaema heterophyllum agglutinin gene (aha) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that multiple copies of the aha gene had integrated into the plant genome. Northern blot analysis revealed that the aha gene was expressed at various levels in the transgenic plants. Insect bioassay test showed that transgenic plants expressing multiple copies of the aha gene reduced the rate of population increase of the peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic tobacco plants expressing the aha gene display enhanced resistance to aphids. Key words: Insect bioassay, Arisaema heterophyllum agglutinin, transformation, transgenic tobacco, peach potato aphid (Myzus persicae Sulzer)


2019 ◽  
Vol 110 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Anna Wróblewska-Kurdyk ◽  
Katarzyna Dancewicz ◽  
Anna Gliszczyńska ◽  
Beata Gabryś

AbstractThe effect of structurally related sesquiterpenoids (E,E)-farnesol and cis-nerolidol on the host-plant selection behaviour of the peach potato aphid Myzus persicae (Sulz.) was evaluated using electrical penetration graph (EPG) technique. No repellent effects of (E,E)-farnesol and (Z)-nerolidol to M. persicae were found but aphid probing activities on (E,E)-farnesol- and cis-nerolidol-treated plants were restrained. During non-phloem phases of probing, neither (E,E)-farnesol nor (Z)-nerolidol affected the cell puncture activity. On (E,E)-farnesol-treated plants, the total duration of phloem phase, the mean duration of individual sustained ingestion periods were significantly lower, and the proportion of phloem salivation was higher than on control plants. On (Z)-nerolidol-treated plants, the occurrence of the first phloem phase was delayed, and the frequency of the phloem phase was lower than on control plants. The freely moving aphids were reluctant to remain on (E,E)-farnesol- and (Z)-nerolidol-treated leaves for at least 24 h after exposure. (E,E)-Farnesol and (Z)-nerolidol show complementary deterrent properties, (E,E)-farnesol showing ingestive and post-ingestive activities and nerolidol showing pre-ingestive, ingestive, and post-ingestive deterrent activities.


Sign in / Sign up

Export Citation Format

Share Document