scholarly journals A Single Amino Acid Insertion in LCYB2 Deflects Carotenoid Biosynthesis in Red Carrot

Author(s):  
Hye Sun Cho ◽  
Seung Hee Jo ◽  
Hyun Ji Park ◽  
Areum Lee ◽  
Haemyeong Jung ◽  
...  

Abstract Carotenoids are phytochemicals that are precursors of vitamin A and effective antioxidants, required for human health. The mechanisms and underlying genetic network responsible for regulating carotenoid production in plants, however, is poorly understood, despite the carotenoid biosynthesis pathway being known. We found that a single amino acid insertion in lycopene β-cyclase2 (LCYB2) caused catalytic failure, possibly due to a flux down of lycopene to the carotenoids which may be the molecular basis for the color of red carrot roots.

Author(s):  
Seung Hee Jo ◽  
Hyun Ji Park ◽  
Areum Lee ◽  
Haemyeong Jung ◽  
Sung Ran Min ◽  
...  

2003 ◽  
Vol 69 (12) ◽  
pp. 7563-7566 ◽  
Author(s):  
Stephen J. Van Dien ◽  
Christopher J. Marx ◽  
Brooke N. O'Brien ◽  
Mary E. Lidstrom

ABSTRACT Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Kinga Kłodawska ◽  
Przemysław Malec ◽  
Mihály Kis ◽  
Zoltán Gombos ◽  
Kazimierz Strzałka

EPR spectroscopy using 5-doxylstearic acid (5-SASL) and 16-doxylstearic acid (16-SASL) spin probes was used to study the fluidity of thylakoid membranes. These were isolated from wild type Synechocystis and from several mutants in genes encoding selected enzymes of the carotenoid biosynthesis pathway and/or acyl-lipid desaturases. Cyanobacteria were cultivated at 25°C and 35°C under different light regimes: photoautotrophically (PAG) and/or in light-activated heterotrophic conditions (LAHG). The relative fluidity of membranes was estimated from EPR spectra based on the empirical outermost splitting parameter in a temperature range from 15°C to 40°C. Our findings demonstrate that in native thylakoid membranes the elimination of xanthophylls decreased fluidity in the inner membrane region under optimal growth conditions (25°C) and increased it under sublethal heat stress (35°C). This indicated that the overall fluidity of native photosynthetic membranes in cyanobacteria may be influenced by the ratio of polar to non-polar carotenoid pools under different environmental conditions.


1997 ◽  
Vol 69 (10) ◽  
pp. 2151-2158 ◽  
Author(s):  
Joseph Hirschberg ◽  
M. Cohen ◽  
Mark Harker ◽  
Tamar Lotan ◽  
Varda Mann ◽  
...  

2010 ◽  
Vol 4 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Pejman Azadi ◽  
Ntui Valentaine Otang ◽  
Dong Poh Chin ◽  
Ikuo Nakamura ◽  
Masaki Fujisawa ◽  
...  

2003 ◽  
Vol 77 (16) ◽  
pp. 8915-8923 ◽  
Author(s):  
Laura M. Palermo ◽  
Karsten Hueffer ◽  
Colin R. Parrish

ABSTRACT Canine parvovirus (CPV) and feline panleukopenia virus (FPV) capsids bind to the transferrin receptors (TfRs) of their hosts and use these receptors to infect cells. The binding is partially host specific, as FPV binds only to the feline TfR, while CPV binds to both the canine and feline TfRs. The host-specific binding is controlled by a combination of residues within a raised region of the capsid. To define the TfR structures that interact with the virus, we altered the apical domain of the feline or canine TfR or prepared chimeras of these receptors and tested the altered receptors for binding to FPV or CPV capsids. Most changes in the apical domain of the feline TfR did not affect binding, but replacing Leu221 with Ser or Asp prevented receptor binding to either FPV or CPV capsids, while replacing Leu221 with Lys resulted in a receptor that bound only to CPV but not to FPV. Analysis of recombinants of the feline and canine TfRs showed that sequences controlling CPV-specific binding were within the apical domain and that more than one difference between these receptors determined the CPV-specific binding of the canine TfR. Single changes within the canine TfR which removed a single amino acid insertion or which eliminated a glycosylation site gave that receptor the expanded ability to bind to FPV and CPV. In some cases, binding of capsids to mutant receptors did not result in infection, suggesting a structural role for the receptor in cell infection by the viruses.


2009 ◽  
Vol 28 (11) ◽  
pp. 1689-1697 ◽  
Author(s):  
Jean Baptiste Bassene ◽  
Yann Froelicher ◽  
Claudie Dhuique-Mayer ◽  
Waffa Mouhaya ◽  
Rosa Mar Ferrer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document