scholarly journals Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo

2020 ◽  
Author(s):  
Liping Zhou ◽  
Panpan Yao ◽  
Lixia Jiang ◽  
Zhaoyun Wang ◽  
Xiaohe Ma ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) are considered a promising tool for treating cerebral ischemic injury. However, their poor survival after transplantation limits their therapeutic effect and applications. Salidroside has been reported to exert potent cytoprotective and neuroprotective effects. This study aimed to investigate whether salidroside could improve MSC survival under hypoxic-ischemic conditions and, subsequently, alleviate cerebral ischemic injury in a rat model.Methods: MSCs were pretreated by salidroside under hypoxic-ischemic conditions. The cell proliferation, migratory capacity, and apoptosis were evaluated by means of Cell Counting Kit (CCK)-8, transwell assay, and flow cytometry. MSCs pretreated with salidroside were transplanted into the rats subsequent to middle cerebral artery occlusion. The grip strength, 2,3,5-triphenyltetrazolium chloride, and hematoxylin-eosin staining were used to analyze the therapeutic efficiency and pathological changes. The mature neuron marker NeuN and astrocyte marker GFAP in the focal area were detected by immunofluorescence.Results: These results indicated that salidroside promoted the proliferation, migration and reduced apoptosis of MSCs under hypoxic-ischemic conditions. In vivo experiments revealed that transplantation of salidroside-pretreated MSCs strengthened the therapeutic efficiency by enhancing neurogenesis and inhibiting neuroinflammation in the hippocampal CA1 area after ischemia.Conclusion: Our results suggest that pretreatment with salidroside could be an effective strategy to enhance the cell survival rate and the therapeutic effect of MSCs in treating cerebral ischemic injury.

2012 ◽  
Vol 9 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Sule Bilen ◽  
Ferda Pinarli ◽  
Fikri Ak ◽  
Ersin Fadillioglu ◽  
Aynur Albayrak ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jialin He ◽  
Jianyang Liu ◽  
Yan Huang ◽  
Xiangqi Tang ◽  
Han Xiao ◽  
...  

Ischemic stroke is a leading cause of death worldwide; currently available treatment approaches for ischemic stroke are to restore blood flow, which reduce disability but are time limited. The interruption of blood flow in ischemic stroke contributes to intricate pathophysiological processes. Oxidative stress and inflammatory activity are two early events in the cascade of cerebral ischemic injury. These two factors are reciprocal causation and directly trigger the development of autophagy. Appropriate autophagy activity contributes to brain recovery by reducing oxidative stress and inflammatory activity, while autophagy dysfunction aggravates cerebral injury. Abundant evidence demonstrates the beneficial impact of mesenchymal stem cells (MSCs) and secretome on cerebral ischemic injury. MSCs reduce oxidative stress through suppressing reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and transferring healthy mitochondria to damaged cells. Meanwhile, MSCs exert anti-inflammation properties by the production of cytokines and extracellular vesicles, inhibiting proinflammatory cytokines and inflammatory cells activation, suppressing pyroptosis, and alleviating blood–brain barrier leakage. Additionally, MSCs regulation of autophagy imbalances gives rise to neuroprotection against cerebral ischemic injury. Altogether, MSCs have been a promising candidate for the treatment of ischemic stroke due to their pleiotropic effect.


2012 ◽  
Vol 1488 ◽  
pp. 81-91 ◽  
Author(s):  
Qiqiang Tang ◽  
Ruodong Han ◽  
Han Xiao ◽  
Jilong Shen ◽  
Qingli Luo ◽  
...  

2021 ◽  
Author(s):  
Lixia Zhang ◽  
Yulong Ma ◽  
Min Liu ◽  
Miao Sun ◽  
Jin Wang ◽  
...  

Abstract Growing evidence indicates that estrogen plays a pivotal role in neuroprotection against cerebral ischemia, but the molecular mechanism of this protection is still elusive. N-myc downstream‐regulated gene 2 (Ndrg2), an estrogen-targeted gene, has been shown to exert neuroprotective effects against cerebral ischemia in male mice. However, the role of Ndrg2 in the neuroprotective effect of estrogen remains unknown. In this study, we first detected NDRG2 expression levels in the cortex and striatum in both female and male mice with western blot analyses. We then detected cerebral ischemic injury by constructing middle cerebral artery occlusion and reperfusion (MCAO-R) models in Ndrg2 knockout or conditional knockdown female mice. We further implemented estrogen, ERα or ERβ agonist replacement in the ovariectomized (OVX) Ndrg2 knockouts or conditional knockdowns female mice, then tested for NDRG2 expression, glial fibrillary acidic protein (GFAP) expression, and extent of cerebral ischemic injury. We found that NDRG2 expression was significantly higher in female than in male mice in both the cortex and striatum. Ndrg2 knockouts and conditional knockdowns showed significantly aggravated cerebral ischemic injury in female mice. Estrogen and ERβ replacement treatment (DPN) led to NDRG2 upregulation in both the cortex and striatum of OVX mice. Estrogen and DPN also led to GFAP upregulation in OVX mice. However, the effect of estrogen and DPN in activating astrocytes was lost in Ndrg2 knockouts OVX mice and primary cultured astrocytes, but partially retained in conditional knockdowns OVX mice. Most importantly, we found that the neuroprotective effects of E2 and DPN against cerebral ischemic injury were lost in Ndrg2 knockouts OVX mice but partially retained in conditional knockdowns OVX mice. These findings demonstrate that estrogen alleviated cerebral ischemic injury via ERβ upregulation of Ndrg2, which could activate astrocytes, indicating that Ndrg2 is a critical mediator of E2-induced neuroprotection against cerebral ischemic injury.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Chun Liu ◽  
Yun Li ◽  
Zhijian Yang ◽  
Zhiyou Zhou ◽  
Zhihao Lou ◽  
...  

The effectiveness of mesenchymal stem cells (MSC) in the treatment of cartilage diseases has been demonstrated to be attributed to the paracrine mechanisms, especially the mediation of exosomes. But the exosomes derived from unsynchronized MSCs may be nonhomogeneous and the therapeutic effect varies between samples. Aim: To produce homogeneous and more effective exosomes for the regeneration of cartilage. Materials & methods: In this study we produced specific exosomes from bone marrow MSCs (BMSC) through kartogenin (KGN) preconditioning and investigated their performance in either in vitro or in vivo experiments. Results & conclusion: The exosomes derived from KGN-preconditioned BMSCs (KGN-BMSC-Exos) performed more effectively than the exosomes derived from BMSCs (BMSC-Exos). KGN preconditioning endowed BMSC-Exos with stronger chondral matrix formation and less degradation.


Sign in / Sign up

Export Citation Format

Share Document