scholarly journals Short-Term Interaction between Silent and Devastating Earthquakes in Mexico

2020 ◽  
Author(s):  
Víctor Cruz-Atienza ◽  
Josué Tago ◽  
Carlos Villafuerte ◽  
Meng Wei ◽  
Ricardo Garza-Girón ◽  
...  

Abstract Triggering of large earthquakes on a fault that hosts aseismic slip or, conversely, triggering of slow slip events (SSE) by passing seismic waves involves seismological questions with major hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stressing produced by the seismic waves of the great Mw8.2 Tehuantepec earthquake, which strongly disturbed the aseismic beating over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. M. Cruz-Atienza ◽  
J. Tago ◽  
C. Villafuerte ◽  
M. Wei ◽  
R. Garza-Girón ◽  
...  

AbstractEither the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.


2020 ◽  
Author(s):  
Frederique Rolandone ◽  
Jean-Mathieu nocquet ◽  
Patricia Mothes ◽  
Paul Jarrin ◽  
Mathilde Vergnolle

<p>In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.</p>


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takahiro Tsuyuki ◽  
Akio Kobayashi ◽  
Reiko Kai ◽  
Takeshi Kimura ◽  
Satoshi Itaba

AbstractAlong the Nankai Trough subduction zone, southwest Japan, short-term slow slip events (SSEs) are commonly detected in strain and tilt records. These observational data have been used in rectangular fault models with uniform slip to analyze SSEs; however, the assumption of uniform slip precludes the possibility of mapping the slip distribution in detail. We report here an inversion method, based on the joint use of strain and tilt data and evaluated in terms of the Akaike’s Bayesian information criterion (ABIC), to estimate the slip distributions of short-term SSEs on the plate interface. Tests of this method yield slip distributions with smaller errors than are possible with the use of strain or tilt data alone. This method provides detailed spatial slip distributions of short-term SSEs including probability estimates, enabling improved monitoring of their locations and amounts of slip.


2020 ◽  
Author(s):  
Raymundo Plata-Martínez ◽  
Satoshi Ide ◽  
Masanao Shinohara ◽  
Emmanuel Soliman Garcia Mortel ◽  
Naoto Mizuno ◽  
...  

Abstract The Guerrero seismic gap is presumed to be a major source of seismic and tsunami hazard along the Mexican subduction zone. Until recently, there were limited observations to describe the shallow portion of the plate interface in Guerrero. For this reason, we deployed offshore instrumentation to gain new seismic data and identify the extent of the seismogenic zone inside the Guerrero gap. We discovered episodic shallow tremors and potential slow slip events which, together with repeating earthquakes, seismicity, residual gravity and residual bathymetry suggest that a portion of the shallow plate interface in the Guerrero seismic gap undergoes stable slip. This mechanical condition may not only explain the long return period of large earthquakes with origins inside the Guerrero seismic gap, but also reveal why the rupture from past M<8 earthquakes on adjacent megathrust fault segments did not propagate into the gap to encompass a larger slip area. Nevertheless, a large enough earthquake initiating nearby could rupture through the entire Guerrero seismic gap if driven by dynamic rupture effects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Plata-Martinez ◽  
S. Ide ◽  
M. Shinohara ◽  
E. S. Garcia ◽  
N. Mizuno ◽  
...  

AbstractThe Guerrero seismic gap is presumed to be a major source of seismic and tsunami hazard along the Mexican subduction zone. Until recently, there were limited observations at the shallow portion of the plate interface offshore Guerrero, so we deployed instruments there to better characterize the extent of the seismogenic zone. Here we report the discovery of episodic shallow tremors and potential slow slip events in Guerrero offshore. Their distribution, together with that of repeating earthquakes, seismicity, residual gravity and bathymetry, suggest that a portion of the shallow plate interface in the gap undergoes stable slip. This mechanical condition may not only explain the long return period of large earthquakes inside the gap, but also reveals why the rupture from past M < 8 earthquakes on adjacent megathrust segments did not propagate into the gap to result in much larger events. However, dynamic rupture effects could drive one of these nearby earthquakes to break through the entire Guerrero seismic gap.


2021 ◽  
Author(s):  
Carolina Filizzola ◽  
Roberto Colonna ◽  
Alexander Eleftheriou ◽  
Nicola Genzano ◽  
Katsumi Hattori ◽  
...  

&lt;p&gt;In order to evaluate the potentiality of the parameter &amp;#8220;RST-based satellite TIR anomalies&amp;#8221; in relation with earthquake (M&amp;#8805;4) occurrence, in recent years we performed three long-term statistical correlation analyses on different seismically active areas, such as Greece (Eleftheriou et al., 2016), Italy (Genzano et al., 2020), and Japan (Genzano et al., 2021).&lt;/p&gt;&lt;p&gt;With this aim, by means of the RST (Robust Satellite Techniques; Tramutoli, 1998, 2007) approach we analysed ten-year time series of satellite images collected by the SEVIRI sensor (on board the MSG platforms) over Greece (2004-2013) and Italy (2004-2014), and by the JAMI and IMAGER sensors (on board the MTSAT satellites) over Japan (2005-2015). &amp;#160;By applying empirical spatial-temporal rules, which are established also taking account of the physical models up to now proposed to explain seismic TIR anomaly appearances, the performed long -term correlation analyses put in relief that a non-casual relation exists between satellite TIR anomalies and the occurrence of earthquakes.&lt;/p&gt;&lt;p&gt;At the same time, in the carried out studies we introduced and validated refinements and improvements to the RST approach, which are able to minimize the proliferation of the false positives (i.e. TIR anomalies independent from the seismic sources, but due to other causes such as meteorological factors).&amp;#160; &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Here, we summarize the achieved results and discuss them from the perspective of a multi-parameter system, which could improve our present knowledge on the earthquake-related processes and increase our capacity to assess the seismic hazard in the medium-short term (months to days).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Eleftheriou, A., C. Filizzola, N. Genzano, T. Lacava, M. Lisi, R. Paciello, N. Pergola, F. Vallianatos, and V. Tramutoli (2016), Long-Term RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Greece in the Period 2004&amp;#8211;2013, Pure Appl. Geophys., 173(1), 285&amp;#8211;303, doi:10.1007/s00024-015-1116-8.&lt;/p&gt;&lt;p&gt;Genzano, N., C. Filizzola, M. Lisi, N. Pergola, and V. Tramutoli (2020), Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy, Ann. Geophys, 63, 5, PA550, doi:10.4401/ag-8227.&lt;/p&gt;&lt;p&gt;Genzano, N., C. Filizzola, K. Hattori, N. Pergola, and V. Tramutoli (2021), Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005 - 2015), Journal of Geophysics Research &amp;#8211; Solid Earth, doi: 10.1029/2020JB020108 (accepted).&lt;/p&gt;&lt;p&gt;Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for Environmental Monitoring: theory and applications, in Proceedings of SPIE, vol. 3496, edited by E. Zilioli, pp. 101&amp;#8211;113, doi: 10.1117/12.332714&lt;/p&gt;&lt;p&gt;Tramutoli, V. (2007), Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications, in 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, pp. 1&amp;#8211;6, IEEE. doi: 10.1109/MULTITEMP.2007.4293057&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document