scholarly journals MovementRx: Versatile clinical movement analysis using Statistical Parametric Mapping

Author(s):  
Amr Ali ALHOSSARY ◽  
Todd Pataky ◽  
Wei Tech ANG ◽  
Karen Sui Geok CHUA ◽  
Cyril John Donnelly

Abstract Background: Clinical gait analysis is an important field of biomechanics that Is influenced by subjectivity, which can lead to type I and II errors. Statistical Parametric Mapping (SPM) is a classical hypothesis testing method that can operate on all measured joint dynamics simultaneously, thereby overcoming errors associated with subjective reduction of these complex data and providing a quantitative and coherent assessment. Results: We present MovementRx, the first gait analysis modelling application that models joints in 3 degrees of freedom. It is a python-based versatile GUI-based movement analysis decision support system, that provides a holistic view of all lower limb joints fundamental to the kinematic/kinetic chain (i.e., related to functional gait). It utilizes the time varying statistical tool SPM1D combined with a visualizing software. The user can cascade the view from single 3D multivariate result down to specific single joint individual scalar component of movement in one dimension. It exports its API as a library for use by another python application or command line. We also presented a case study of a unilateral knee osteoarthritis (OA) patient with otherwise undetected contralateral OA predisposition. The intervention elevated the patient’s moments on the right (affected) limb, but it led to adverse compensation on the left (contralateral) limb, leaving the patient likely to develop OA in her left limb in the future, unless immediate preventive and / or corrective actions were taken. Conclusions: MovementRx is a clinical gait analysis tool for that provides objective representation of the magnitude of statistical effect of all relevant joints in a simple, coherent, objective, and visually intuitive manner. No other software correctly model joints in 3 degrees of freedom.

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessica C. Böpple ◽  
Michael Tanner ◽  
Sarah Campos ◽  
Christian Fischer ◽  
Sebastian Müller ◽  
...  

Abstract Background Ankle fractures are common fractures in trauma surgery. Several studies have compared gait patterns between affected patients and control groups. However, no one used the Heidelberg Foot Measurement Method in combination with statistical parametric mapping of the entire gait cycle in this patient cohort. We sought to identify possible mobility deficits in the tibio-talar joint and medial arch in patients after ankle fractures as a sign of stiffness and pain that could result in a pathological gait pattern. We focused on the tibio-talar flexion as it is the main movement in the tibio-talar joint. Moreover, we examined the healing progress over time. Methods Fourteen patients with isolated ankle fractures were included prospectively. A gait analysis using the Heidelberg Foot Measurement Method was performed 9 and 26 weeks after surgery to analyse the tibio-talar dorsal flexion, the foot tibia dorsal flexion, the subtalar inversion and the medial arch as well as the cadence, the walking speed and the ground reaction force. The American Orthopedic Foot & Ankle Society ankle hindfoot score was used to obtain clinical data. Results were compared to those from 20 healthy participants. Furthermore, correlations between the American Orthopedic Foot & Ankle Society hindfoot score and the results of the gait analysis were evaluated. Results Statistical parametric mapping showed significant differences for the Foot Tibia Dorsal Flexion for patients after 9 weeks (53–75%: p = 0.001) and patients after 26 weeks (58–70%: p = 0.011) compared to healthy participants, respectively. Furthermore, significant differences regarding the tibio-talar dorsal flexion for patients 9 weeks after surgery (15–40%: p < 0.001; 56,5–70%: p = 0.007; 82–88%: p = 0.033; 97–98,5%: p = 0.048) as well as patients after 26 weeks (62,5–65%: p = 0.049) compared to healthy participants, respectively. There were no significant differences looking at the medial arch and the subtalar inversion. Moreover, significant differences regarding the ground reaction force were found for patients after 9 weeks (0–17%: p < 0.001; 21–37%: p < 0.001; 41–54%: p < 0.001; 60–64%: p = 0.013) as well as patients after 26 weeks (0–1,5%: p = 0.046; 5–15%: p < 0.001; 27–33%: p = 0.001; 45–49%: p = 0.005; 57–59%: p = 0.049) compared to healthy participants, respectively. In total, the range of motion in the tibio-talar joint and the medial arch was reduced in affected patients compared to healthy participants. Patients showed significant increase of the range of motion between 9 and 26 weeks. Conclusions This study shows, that patients affected by ankle fractures show limited mobility in the tibio-talar joint and the medial arch when compared to healthy participants. Even though the limitation of motion remains at least over a period of 26 weeks, a significant increase can be recognized over time. Furthermore, if we look at the absolute values, the patients’ values tend to get closer to those of the control group. Trial registration This study is registered at the German Clinical Trials Register (DRKS00023379).


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3667
Author(s):  
Sangheon Park ◽  
Sukhoon Yoon

Inertial measurement units (IMUs) are possible alternatives to motion-capture systems (Mocap) for gait analysis. However, IMU-based system performance must be validated before widespread clinical use. Therefore, this study evaluated the validity of IMUs using statistical parametric mapping (SPM) for gait analysis. Ten healthy males (age, 30.10 ± 3.28 years; height, 175.90 ± 5.17 cm; weight: 82.80 ± 17.15 kg) participated in this study; they were asked to walk normally on a treadmill. Data were collected during walking at the self-selected speeds (preferred speed, 1.34 ± 0.10 m/s) using both Mocap and an IMU. Calibration was performed directly before each gait measurement to minimize the IMU drift error over time. The lower-extremity joint angles of the hip, knee, and ankle were calculated and compared with IMUs and Mocap; the hip-joint angle did not differ significantly between IMUs and Mocap. There were significant differences in the discrete (max, min, and range of motion) and continuous variables (waveform: 0–100%) of the knee and ankle joints between IMUs and Mocap, particularly on the swing phase (p < 0.05). Our results suggest that IMU-based data can be used confidently during the stance phase but needs evaluation regarding the swing phase in gait analysis.


2020 ◽  
Vol 25 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Won Seok Chang ◽  
Midori Nakajima ◽  
Ayako Ochi ◽  
Elysa Widjaja ◽  
James T. Rutka ◽  
...  

Advanced dynamic statistical parametric mapping (AdSPM) with magnetoencephalography (MEG) was used to identify MRI-negative epileptogenic lesions in this report. A 15-year-old girl had MRI-negative and pharmacology-resistant focal-onset epilepsy. She experienced two types of seizures. Type I consisted of her arousal from sleep, staring, and a forced head-turning movement to the left, followed by secondary generalization. Type II began with an aura of dizziness followed by staring and postictal headache with fatigue. Scalp video-electroencephalography (EEG) captured two type I seizures originating from the right frontocentral region. MEG showed scattered dipoles over the right frontal region. AdSPM identified the spike source at the bottom of the right inferior frontal sulcus. Intracranial video-EEG captured one type I seizure, which originated from the depth electrode at the bottom of the sulcus and correlated with the AdSPM spike source. Accordingly, the patient underwent resection of the middle and inferior frontal gyri, including the AdSPM-identified spike source. Histopathological examination revealed that the patient had focal cortical dysplasia type IIB. To date, the patient has been seizure free for 2 years while receiving topiramate treatment. This is the first preliminary report to identify MRI-negative epilepsy using AdSPM. Further investigation of AdSPM would be valuable for cases of MRI-negative focal epilepsy.


2021 ◽  
Vol 85 ◽  
pp. 55-64
Author(s):  
Julian Rudisch ◽  
Thomas Jöllenbeck ◽  
Lutz Vogt ◽  
Thomas Cordes ◽  
Thomas Jürgen Klotzbier ◽  
...  

2020 ◽  
Vol 81 ◽  
pp. 281-282
Author(s):  
S. Pitarch-Corresa ◽  
C. Herrera-Ligero ◽  
J.Y. Torres-Villanueva ◽  
E. Medina-Ripoll ◽  
F. Parra-González ◽  
...  

2019 ◽  
Vol 40 (05) ◽  
pp. 317-330 ◽  
Author(s):  
Marine Alhammoud ◽  
Baptiste Morel ◽  
Clint Hansen ◽  
Mathew Wilson ◽  
Regis Mecca ◽  
...  

AbstractStandard outcomes of traditional isokinetic testing do not detect differences between various muscle mechanical properties. This study i) explored a novel analysis throughout the range of motion based on statistical parametric mapping and ii) examined the impact of sex and discipline on hamstrings/quadriceps torque in elite alpine skiers. Twenty-eight national team skiers (14 females, 14 males; 14 technical, 14 speed) undertook an isokinetic evaluation of the knee flexors/extensors (range 30–90°, 0° representing full extension). There was no effect of sex (p=0.864, d=0.03) and discipline (p=0.360, d=0.17) on maximal hamstrings-to-quadriceps ratio and no effect of discipline on maximal torque (p>0.156, d≤0.25). Hamstrings torque and hamstrings-to-quadriceps ratio were lower in females than males toward knee extension only (p<0.05). Quadriceps torque was greater after 72° of knee flexion in technicians than downhill skiers (p<0.05). The current data showed that statistical parametric mapping analysis identified angle-specific differences that could not be evidenced when analyzing only maximal torques and reconstructed ratios. This may enhance screening methods to identify pathologic knee function or monitor rehabilitation programs, and inform sex- and discipline-specific training in alpine skiing.


2015 ◽  
Vol 42 ◽  
pp. S37
Author(s):  
M. Alvela ◽  
M. Bergmann ◽  
M.-L. Ööpik ◽  
Ü. Kruus ◽  
K. Englas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document