scholarly journals Motor Cortex Plasticity Response to Acute Cardiorespiratory Exercise and Intermittent Theta-Burst Stimulation is Attenuated in Premanifest and Early Huntington’s Disease

Author(s):  
Sophie C. Andrews ◽  
Dylan Curtin ◽  
James P. Coxon ◽  
Julie C. Stout

Abstract Huntington’s disease (HD) mouse models suggest that cardiovascular exercise may enhance neuroplasticity and delay disease signs, however, the effects of exercise on neuroplasticity in people with HD are unknown. Using a repeated-measures experimental design, we compared the effects of a single bout of high-intensity exercise, moderate-intensity exercise, or rest, on motor cortex synaptic plasticity in 14 HD CAG-expanded participants (9 premanifest & 5 early manifest) and 20 CAG-healthy control participants, using transcranial magnetic stimulation. Measures of cortico-motor excitability, short-interval intracortical inhibition and intracortical facilitation were obtained before and after a 20-minute bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). HD participants showed less inhibition at baseline compared to controls. Whereas the control group showed increased excitability and facilitation following high-intensity exercise and iTBS, the HD group showed no differences in neuroplasticity responses following either exercise intensity or rest, with follow-up Bayesian analyses providing consistent evidence that these effects were absent in the HD group. These findings indicate that exercise-induced synaptic plasticity mechanisms in response to acute exercise may be attenuated in HD, and demonstrate the need for future research to further investigate exercise and plasticity mechanisms in people with HD.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lara Merken ◽  
Marco Davare ◽  
Peter Janssen ◽  
Maria C. Romero

AbstractThe neural mechanisms underlying the effects of continuous Theta-Burst Stimulation (cTBS) in humans are poorly understood. Animal studies can clarify the effects of cTBS on individual neurons, but behavioral evidence is necessary to demonstrate the validity of the animal model. We investigated the behavioral effect of cTBS applied over parietal cortex in rhesus monkeys performing a visually-guided grasping task with two differently sized objects, which required either a power grip or a pad-to-side grip. We used Fitts’ law, predicting shorter grasping times (GT) for large compared to small objects, to investigate cTBS effects on two different grip types. cTBS induced long-lasting object-specific and dose-dependent changes in GT that remained present for up to two hours. High-intensity cTBS increased GTs for a power grip, but shortened GTs for a pad-to-side grip. Thus, high-intensity stimulation strongly reduced the natural GT difference between objects (i.e. the Fitts’ law effect). In contrast, low-intensity cTBS induced the opposite effects on GT. Modifying the coil orientation from the standard 45-degree to a 30-degree angle induced opposite cTBS effects on GT. These findings represent behavioral evidence for the validity of the nonhuman primate model to study the neural underpinnings of non-invasive brain stimulation.


2014 ◽  
Vol 261 ◽  
pp. 177-184 ◽  
Author(s):  
Bimal Lakhani ◽  
David A.E. Bolton ◽  
Veronica Miyasike-daSilva ◽  
Albert H. Vette ◽  
William E. McIlroy

2008 ◽  
Vol 119 ◽  
pp. S29-S30 ◽  
Author(s):  
Giacomo Koch ◽  
John Rothwell ◽  
Francesco Mori ◽  
Barbara MArconi ◽  
Massimiliano Oliveri ◽  
...  

2009 ◽  
Vol 120 (4) ◽  
pp. 796-801 ◽  
Author(s):  
Ying-Zu Huang ◽  
John C. Rothwell ◽  
Chin-Song Lu ◽  
JiunJie Wang ◽  
Yi-Hsin Weng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document