scholarly journals An Intelligent Manufacturing Cell Based on Human-robot Collaboration of Frequent Task Learning for Flexible Manufacturing

Author(s):  
Shuai Zhang ◽  
Shiqi Li ◽  
Haipeng Wang ◽  
Xiao Li

Abstract The manufacturing industry was moving towards the trend of short run production and personalized customization. That results in the challenge of the efficiency of task adjustment and the complexity of tasks for robots. Thus, this paper developed the intelligent manufacturing cell based on human-robot collaboration(HRC-IMC), combining the intelligence of cobot with that of human. And the intelligent manufacturing cell was composed with the modules of imitating learning, human-robot safety planning, task planning and visual inferring. Moreover, all modules were designed to provide a set of systematic and e ective method which can improve the efficiency of task planning and new task learning. The experimental results indicated that the the efficiency of task adjustment of HRC-IMC can be increased 42.8 % than that of Moveit. All in all, this study is of great significance for improving the efficiency of new task planning of cobots by digitizing the manipulation experience of human.

Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Duan Pingli ◽  
Bala Anand Muthu ◽  
Seifedine Nimer Kadry

BACKGROUND: The manufacturing industry undergoes a new age, with significant changes taking place on several fronts. Companies devoted to digital transformation take their future plants inspired by the Internet of Things (IoT). The IoT is a worldwide network of interrelated physical devices, which is an essential component of the internet, including sensors, actuators, smart apps, computers, mechanical machines, and people. The effective allocation of the computing resources and the carrier is critical in the industrial internet of Things (IIoT) for smart production systems. Indeed, the existing assignment method in the smart production system cannot guarantee that resources meet the inherently complex and volatile requirements of the user are timely. Many research results on resource allocations in auction formats which have been implemented to consider the demand and real-time supply for smart development resources, but safety privacy and trust estimation issues related to these outcomes are not actively discussed. OBJECTIVES: The paper proposes a Hierarchical Trustful Resource Assignment (HTRA) and Trust Computing Algorithm (TCA) based on Vickrey Clarke-Groves (VGCs) in the computer carriers necessary resources to communicate wirelessly among IIoT devices and gateways, and the allocation of CPU resources for processing information at the CPC. RESULTS: Finally, experimental findings demonstrate that when the IIoT equipment and gateways are valid, the utilities of each participant are improved. CONCLUSION: This is an easy and powerful method to guarantee that intelligent manufacturing components genuinely work for their purposes, which want to integrate each element into a system without interactions with each other.


2012 ◽  
Vol 186 ◽  
pp. 239-246
Author(s):  
Silviu Mihai Petrişor ◽  
Ghiţă Bârsan

The authors of this paper aim to highlight the basic design of a flexible manufacturing cell destined for the final processing of water radiators used for AAVs, cell serviced by a serial modular industrial robot possessing in its kinematic chain structure three degrees of freedom, RRT SIL type. The paper outlines the concept, calculation and design of the (MRB) rotation module at the studied industrial robot’s base and of the (MT) translation module of the prehension device attached to the robotic arm. Depending on the organological elements that are part of the MRB rotation module and based on a rigorous dynamic study performed on robotic modules, modeling conducted with the help of Lagrangian equations of the second kind, a dynamic-organological calculation algorithm was obtained for the selection of the appropriate driving servomotor necessary to putting the rotation movable system into service. The last part of the paper deals with the flexible manufacturing cell, together with the calculations related to profitability, economy and investment return duration, following the implementation of the RRT SIL-type industrial robot.


2014 ◽  
Vol 635-637 ◽  
pp. 1390-1393
Author(s):  
Yu Zhou ◽  
Xue Wu Hu ◽  
Xiao Ming Sheng

Rotary flexible manufacturing cell with multi-station automatic stretching is designed in this paper to meet the requirements of the machining process of cylindrical drawing parts as well as the needs of different stations for multi-drawing. The cell uses fixed circular disc worktable with multi-station. Each machining station has hydraulic stretcher to complete the drawing of the workpiece. Flexible manipulator finishes automatic loading and unloading among hydraulic stretchers. Gripper of manipulator with automatic center aligning and size control can grip workpiece in various sizes and has the function of self-centering. This equipment has completely realized all the stretching processes automaticly from feeding sheet metal to sending and forming workpieces. It can improve production efficiency and quality. It can also improve safety, reliability and cost efficiency. When replacing worked parts is needed, simply replace modular mold of every station in fixed circular disc worktable.


Author(s):  
Yang Hu ◽  
Zitong Liu ◽  
Feng Xu ◽  
Jiayi Liu ◽  
Wenjun Xu ◽  
...  

Abstract The research of human-robot collaboration for intelligent manufacturing is being paid gradually increasing attention due to high flexibility and high manufacturing efficiency. Comparing with the traditional manufacturing with low flexibility, human-robot collaboration in manufacturing system provides more personalized and flexible way to cover the shortages of traditional manufacturing mode. In human-robot collaboration system, human motion position prediction in the collaborative space is an essential prerequisite for ensuring the safety of workers. In this paper, 3D sensor Kinect is utilized to directly obtain human joint information. A partial circle delimitation method is used to solve the offset phenomenon of human joint obtained by Kinect, so as to achieve accurate estimation of human joint points. On this basis, an algorithm combing multilayer perceptron and long short-term memory network is explored to predict human motion position accurately. It not only helps to avoid complex feature extraction due to its end-to-end characteristic, but also provide natural interaction manner between human and robot without wearable devices or tags that may become a burden for the former. After that, the experimental results demonstrate that the proposed method makes predicting results accurate, and provides the reliable basis for human position prediction in the human-robot collaboration. This research could be applied to the human motion position prediction in human-robot collaboration process.


Sign in / Sign up

Export Citation Format

Share Document