scholarly journals Thermal Bridging Through Branches of Snow-Covered Shrubs Cool Down Permafrost in Winter

Author(s):  
Florent Domine ◽  
Kevin Fourteau ◽  
Ghislain Picard ◽  
Georg Lackner ◽  
Denis Sarrazin ◽  
...  

Abstract Warming-induced shrub expansion on Arctic tundra (Arctic greening) is thought to warm up permafrost by several degrees, as shrubs trap blowing snow and increase snowpack thermal insulation, limiting permafrost winter cooling and facilitating its thaw. At Bylot Island, (Canadian high Arctic, 73°N) we monitored permafrost temperature at nearby unmanipulated herb tundra and shrub tundra sites and unexpectedly observed that low shrubs cool permafrost by 1.21°C over the November-February period. This is despite a snowpack twice as insulating in shrubs. Using heat transfer models and finite-element simulations, we show that this winter cooling is caused by thermal bridging through frozen shrub branches. This effect largely compensates the warming effect induced by the more insulating snow in shrubs. The cooling is partly canceled in spring when shrub branches under snow absorb solar radiation and accelerate permafrost warming. The overall effect is expected to depend on snow and shrub characteristics and terrain aspect. These significant perturbations of the permafrost thermal regime by shrub branches should be considered in projections of permafrost thawing, nutrient recycling and greenhouse gas emissions.

2021 ◽  
Author(s):  
Florent Dominé ◽  
Kevin Fourteau ◽  
Ghislain Picard

<p>Warming-induced shrub expansion on Arctic tundra is generally thought to warm up permafrost, as shrubs trap blowing snow and increase the thermal insulation effect of snow, limiting permafrost winter cooling. We have monitored the thermal regime of permafrost on Bylot Island, 73°N in the Canadian high Arctic at nearby herb tundra and shrub tundra sites. Once adjusted for differences in air temperature, we find that shrubs actually cool permafrost by 0.6°C over November-March 2019, despite a snowpack twice as insulating in shrubs. By simulating the rate of propagation of thermal perturbations and using finite element calculations, we show that heat conduction through frozen shrub branches have a winter cooling effect of 1.5°C which compensates the warming effect induced by the more insulating snow in shrubs. In spring shrub branches under snow absorb solar radiation and accelerate permafrost warming. Over the whole snow season, simulations indicate that heat and radiation transfer through shrub branches result in a 0.3°C cooling effect. This is contrary to many previous studies, which concluded to a warming effect, sometimes based on environmental manipulations that may perturb the natural environment. The impact of shrubs on the permafrost thermal regime may need to be re-evaluated.</p>


2003 ◽  
Vol 29 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Becky Sjare ◽  
Ian Stirling ◽  
Cheryl Spencer

2021 ◽  
Vol 250 ◽  
pp. 118254
Author(s):  
Andy Vicente-Luis ◽  
Samantha Tremblay ◽  
Joelle Dionne ◽  
Rachel Y.-W. Chang ◽  
Pierre F. Fogal ◽  
...  

2019 ◽  
Vol 46 (12) ◽  
pp. 6681-6689 ◽  
Author(s):  
Louise M. Farquharson ◽  
Vladimir E. Romanovsky ◽  
William L. Cable ◽  
Donald A. Walker ◽  
Steven V. Kokelj ◽  
...  

Polar Biology ◽  
2010 ◽  
Vol 33 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
John Chételat ◽  
Louise Cloutier ◽  
Marc Amyot

Sign in / Sign up

Export Citation Format

Share Document