permafrost warming
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 13 (21) ◽  
pp. 4389
Author(s):  
Kazuyoshi Suzuki ◽  
Hotaek Park ◽  
Olga Makarieva ◽  
Hironari Kanamori ◽  
Masahiro Hori ◽  
...  

With permafrost warming, the observed discharge of the Kolyma River in northeastern Siberia decreased between 1930s and 2000; however, the underlying mechanism is not well understood. To understand the hydrological changes in the Kolyma River, it is important to analyze the long-term hydrometeorological features, along with the changes in the active layer thickness. A coupled hydrological and biogeochemical model was used to analyze the hydrological changes due to permafrost warming during 1979–2012, and the simulated results were validated with satellite-based products and in situ observational records. The increase in the active layer thickness by permafrost warming suppressed the summer discharge contrary to the increased summer precipitation. This suggests that the increased terrestrial water storage anomaly (TWSA) contributed to increased evapotranspiration, which likely reduced soil water stress to plants. As soil freeze–thaw processes in permafrost areas serve as factors of climate memory, we identified a two-year lag between precipitation and evapotranspiration via TWSA. The present results will expand our understanding of future Arctic changes and can be applied to Arctic adaptation measures.


2021 ◽  
Author(s):  
Florent Domine ◽  
Kevin Fourteau ◽  
Ghislain Picard ◽  
Georg Lackner ◽  
Denis Sarrazin ◽  
...  

Abstract Warming-induced shrub expansion on Arctic tundra (Arctic greening) is thought to warm up permafrost by several degrees, as shrubs trap blowing snow and increase snowpack thermal insulation, limiting permafrost winter cooling and facilitating its thaw. At Bylot Island, (Canadian high Arctic, 73°N) we monitored permafrost temperature at nearby unmanipulated herb tundra and shrub tundra sites and unexpectedly observed that low shrubs cool permafrost by 1.21°C over the November-February period. This is despite a snowpack twice as insulating in shrubs. Using heat transfer models and finite-element simulations, we show that this winter cooling is caused by thermal bridging through frozen shrub branches. This effect largely compensates the warming effect induced by the more insulating snow in shrubs. The cooling is partly canceled in spring when shrub branches under snow absorb solar radiation and accelerate permafrost warming. The overall effect is expected to depend on snow and shrub characteristics and terrain aspect. These significant perturbations of the permafrost thermal regime by shrub branches should be considered in projections of permafrost thawing, nutrient recycling and greenhouse gas emissions.


2021 ◽  
Author(s):  
Jan Beutel ◽  
Andreas Biri ◽  
Ben Buchli ◽  
Alessandro Cicoira ◽  
Reynald Delaloye ◽  
...  

Abstract. Permafrost warming is coinciding with accelerated mass movements, talking place especially in steep, mountainous topography. While this observation is backed up by evidence and analysis of both remote sensing as well as repeat terrestrial surveys undertaken since decades much knowledge is to be gained about the specific details, the variability and the processes governing these mass movements in the mountain cryosphere. This dataset collates data of continuously acquired kinematic observations obtained through in-situ Global Navigation Satellite Systems (GNSS) instruments that have been designed and implemented in a large-scale multi field-site monitoring campaign across the whole Swiss Alps. The landforms covered include rock glaciers, high-alpine steep bedrock bedrock as well as landslide sites, most of which are situated in permafrost areas. The dataset was acquired at 54 different stations situated at locations from 2304 to 4003 m a.s.l and comprises 209’948 daily positions derived through double-differential GNSS post-processing. Apart from these, the dataset contains down-sampled and cleaned time series of weather station and inclinometer data as well as the full set of GNSS observables in RINEX format. Furthermore the dataset is accompanied by tools for processing and data management in order to facilitate reuse, open alternate usage opportunities and support the life-long living data process with updates. To date this dataset has seen numerous use cases in research as well as natural-hazard mitigation and adaptation due to climate change.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anna Haberkorn ◽  
Robert Kenner ◽  
Jeannette Noetzli ◽  
Marcia Phillips

Rising air temperatures and increasingly intense precipitation are being observed in the Swiss Alps. These changes strongly affect the evolution of the temperature regime and the dynamics of mountain permafrost. Changes occur at different rates depending on ground ice content. Long-term monitoring reveals progressive warming and degradation of permafrost and accelerating rock glacier velocities. This study analyses changes occurring in ice-rich (excess-ice) and ice-poor mountain permafrost in Switzerland between 1997 and 2019 on the basis of ground temperature and rock glacier dynamics measurements carried out by the WSL Institute for Snow and Avalanche Research SLF at seven sites. Long-term borehole data indicate an increase of ground temperatures at all depths, in particular at ice-poor and nearly snow-free sites. Active layers are thickening at most sites and prolonged periods of active layer thaw are observed. Long autumn zero curtains are observed in ice-rich permafrost, possibly leading to an overall acceleration of rock glaciers. All these changes point towards ongoing permafrost warming and permafrost degradation in future.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minghao Liu ◽  
Jing Luo ◽  
Liang Zhang ◽  
Xin Ju

A crushed-rock revetment (CRR) with high permeability that can be paved on embankment slopes is widely used to cool and protect the subgrade permafrost. In this study, a traditional CRR over warm permafrost was selected to investigate its cooling characteristics based on the ground temperature observed from 2003 to 2014. A new mitigation structure (NMS) was designed to improve the cooling capacity of the CRR and to counter the pore-filling of the rock layer. Numerical simulations were conducted to evaluate the cooling performance and reinforcing capacity of the NMS based on a developed heat and mass transfer model. The results indicate that the traditional CRR can improve the symmetry of the permafrost subgrade and decrease the ground temperature of shallow permafrost. However, the CRR cannot generate strong enough cooling to influence the deep (below 10 m depth) and warm permafrost with a mean annual ground temperature above −1.0°C. The wind-blown sand can further weaken the cooling of the CRR and cause significant permafrost warming and thawing beneath the slopes, posing a severe threat to the long-term safe operation of the embankment. The proposed NMS can produce a significantly superior cooling performance to the CRR. If the CRR is reinforced by the new structure, it can not only effectively cool the underlying warm permafrost but also elevate the permafrost table. The new structure can also protect the rock layer on the slopes from sand-filling. The NMS can be used as an effective method for roadbed design or maintenance over warm permafrost.


2021 ◽  
Author(s):  
Florent Dominé ◽  
Kevin Fourteau ◽  
Ghislain Picard

<p>Warming-induced shrub expansion on Arctic tundra is generally thought to warm up permafrost, as shrubs trap blowing snow and increase the thermal insulation effect of snow, limiting permafrost winter cooling. We have monitored the thermal regime of permafrost on Bylot Island, 73°N in the Canadian high Arctic at nearby herb tundra and shrub tundra sites. Once adjusted for differences in air temperature, we find that shrubs actually cool permafrost by 0.6°C over November-March 2019, despite a snowpack twice as insulating in shrubs. By simulating the rate of propagation of thermal perturbations and using finite element calculations, we show that heat conduction through frozen shrub branches have a winter cooling effect of 1.5°C which compensates the warming effect induced by the more insulating snow in shrubs. In spring shrub branches under snow absorb solar radiation and accelerate permafrost warming. Over the whole snow season, simulations indicate that heat and radiation transfer through shrub branches result in a 0.3°C cooling effect. This is contrary to many previous studies, which concluded to a warming effect, sometimes based on environmental manipulations that may perturb the natural environment. The impact of shrubs on the permafrost thermal regime may need to be re-evaluated.</p>


2020 ◽  
Author(s):  
Elaine F. Pegoraro ◽  
Marguerite E. Mauritz ◽  
Kiona Ogle ◽  
Christopher H. Ebert ◽  
Edward A. G. Schuur

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antoine Guerin ◽  
Ludovic Ravanel ◽  
Battista Matasci ◽  
Michel Jaboyedoff ◽  
Philip Deline

Abstract Since the end of the Little Ice Age, the west face of the Drus (Mont Blanc massif, France) has been affected by a retrogressive erosion dynamic marked by large rockfall events. From the 1950s onwards, the rock failure frequency gradually increased until the large rockfall event (292,680 m3) of June 2005, which made the Bonatti Pillar disappear. Aiming to characterize the rock failure activity following this major event, which may be related to permafrost warming, the granitic rock face was scanned each autumn between October 2005 and September 2016 using medium- and long-range terrestrial laser scanners. All the point clouds were successively compared to establish a rockfall source inventory and determine a volume-frequency relationship. Eleven years of monitoring revealed a phase of rock failure activity decay until September 2008, a destabilization phase between September 2008 and November 2011, and a new phase of rock failure activity decay from November 2011 to September 2016. The destabilization phase was marked by three major rockfall events covering a total volume of 61,494 m3, resulting in the progressive collapse of a new pillar located in the northern part of the June 2005 rockfall scar. In the same way as for the Bonatti Pillar, rock failure instability propagated upward with increasing volumes. In addition to these major events, 304 rockfall sources ranging from 0.002 to 476 m3 were detected between 2005 and 2016. The temporal evolution of rock failure activity reveals that after a major event, the number of rockfall sources and the eroded volume both follow a rapid decrease. The rock failure activity is characterized by an exponential decay during the period following the major event and by a power-law decay for the eroded volume. The power law describing the distribution of the source volumes detected between 2005 and 2016 indicates an exponent of 0.48 and an average rock failure activity larger of more than six events larger than 1 m3 per year. Over the 1905–2016 period, a total of 426,611 m3 of rock collapsed from the Drus west face, indicating a very high rock wall retreat rate of 14.4 mm year−1 over a surface of 266,700 m2. Averaged over a time window of 1000 years, the long-term retreat rate derived from the frequency density integration of rock failure volumes is 2.9 mm year−1. Despite difficulty in accessing and monitoring the site, our study demonstrates that long-term surveys of high-elevation rock faces are possible and provide valuable information that helps improve our understanding of landscape evolution in mountainous settings subject to permafrost warming.


2020 ◽  
Vol 125 (6) ◽  
Author(s):  
Heidi Rodenhizer ◽  
Justin Ledman ◽  
Marguerite Mauritz ◽  
Susan M. Natali ◽  
Elaine Pegoraro ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document