An Evolutionary Trajectory Planning Algorithm for Multi-UAV-Assisted MEC System

Author(s):  
Muhammad Asim ◽  
Wali Khan ◽  
Samir Brahim Belhaouari

Abstract This paper presents a multi-unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system, where multiple UAVs are used to serve mobile users (MUs). We aim to minimize the overall energy consumption of the system by planning the trajectories of UAVs. To plan the trajectories of UAVs, we need to consider the deployment of hovering points (HPs) of UAVs, their association with UAVs, and their order for each UAV. Therefore, the problem is very complicated, as it is non-convex, nonlinear, NP-hard, and mixed-integer. To solve the problem, this paper proposed an evolutionary trajectory planning algorithm (ETPA), which comprises three phases. In the first phase, variable-length GA is adopted to update the deployments of HPs for UAVs. Accordingly, redundant HPs are removed by the remove operator. Subsequently, differential evolution clustering is adopted to cluster HPs into different clusters without knowing the number of HPs in advance. Finally, a GA is proposed to construct the order of HPs for UAVs. The experimental results on a set of eight instances show that the proposed ETPA outperforms other compared algorithms in terms of the energy consumption of the system.This paper presents a multi-unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system, where multiple UAVs are used to serve mobile users (MUs). We aim to minimize the overall energy consumption of the system by planning the trajectories of UAVs. To plan the trajectories of UAVs, we need to consider the deployment of hovering points (HPs) of UAVs, their association with UAVs, and their order for each UAV. Therefore, the problem is very complicated, as it is non-convex, nonlinear, NP-hard, and mixed-integer. To solve the problem, this paper proposed an evolutionary trajectory planning algorithm (ETPA), which comprises three phases. In the first phase, variable-length GA is adopted to update the deployments of HPs for UAVs. Accordingly, redundant HPs are removed by the remove operator. Subsequently, differential evolution clustering is adopted to cluster HPs into different clusters without knowing the number of HPs in advance. Finally, a GA is proposed to construct the order of HPs for UAVs. The experimental results on a set of eight instances show that the proposed ETPA outperforms other compared algorithms in terms of the energy consumption of the system.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yuyu Li ◽  
Wei Yang ◽  
Bo Huang

Compared with traditional vehicles delivery, unmanned aerial vehicle (UAV) delivery can reduce energy consumption and greenhouse gas emissions, which benefits environmental sustainability. Besides, UAVs can overcome traffic restrictions, which are the big obstacle in parcel delivery. In reality, there are two kinds of most popular traffic restrictions, vehicle-type restriction, and half-side traffic. We propose a mixed-integer (0-1 linear) green routing model with these two kinds of traffic restrictions for UAVs to exploit the environmental aspects of the use of UAVs in logistics. A genetic algorithm is proposed to efficiently solve the complex routing problem, and an experimental analysis is made to illustrate and validate our model and the algorithm. We found that, under both these two traffic restrictions, UAV delivery can accomplish deliveries that cannot be carried out or are carried out at much higher costs by vehicles only and can always effectively save costs and cut CO2 emissions, which is environmentally friendly. Furthermore, UAV delivery saves more cost and cuts more CO2 emission under the first kind of traffic restriction than that under the second.


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


2020 ◽  
Vol 27 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Fuhui Zhou ◽  
Rose Qingyang Hu ◽  
Zan Li ◽  
Yuhao Wang

Sign in / Sign up

Export Citation Format

Share Document