THz Super-Resolution Imaging in Transmission Technology by Using Butterfly and Pattern Device Samples

Author(s):  
Nagendra Prasad Yadav ◽  
Guozhen Hu ◽  
Yi-Fan Wang

Abstract Recently there has been an increasing demand for terahertz technology especially in imaging. In the past few decades, the applications of terahertz (THz) imaging technology have seen significant developments in the fields of biology, medical diagnosis, food safety, and nondestructive testing. The medical and semiconductor industry has always attracted significant attention worldwide. In particular, the importance of real and perfect inspection technologies has been growing due to an increasing demand for improving the quality of life and developing industries. This paper presents the research of THz technology with super-resolution THz imaging in transmission mode on four types of different samples. We have reported transmission measurement at different THz frequency of each sample. The butterfly sample used super-resolution THz imaging. The THz super-resolution is obtained excellent at 1.8 THz, it is near about 1 micrometer. A good resolution images have been obtained. This new THz super-resolution techniques can apply in medical and security purposes. Further applications will be reported in coming papers.

2019 ◽  
Vol 116 (11) ◽  
pp. 4804-4809 ◽  
Author(s):  
Felipe Moser ◽  
Vojtěch Pražák ◽  
Valerie Mordhorst ◽  
Débora M. Andrade ◽  
Lindsay A. Baker ◽  
...  

Correlative light and electron cryo-microscopy (cryo-CLEM) combines information from the specific labeling of fluorescence cryo-microscopy (cryo-FM) with the high resolution in environmental context of electron cryo-microscopy (cryo-EM). Exploiting super-resolution methods for cryo-FM is advantageous, as it enables the identification of rare events within the environmental background of cryo-EM at a sensitivity and resolution beyond that of conventional methods. However, due to the need for relatively high laser intensities, current super-resolution cryo-CLEM methods require cryo-protectants or support films which can severely reduce image quality in cryo-EM and are not compatible with many samples, such as mammalian cells. Here, we introduce cryogenic super-resolution optical fluctuation imaging (cryo-SOFI), a low-dose super-resolution imaging scheme based on the SOFI principle. As cryo-SOFI does not require special sample preparation, it is fully compatible with conventional cryo-EM specimens, and importantly, it does not affect the quality of cryo-EM imaging. By applying cryo-SOFI to a variety of biological application examples, we demonstrate resolutions up to ∼135 nm, an improvement of up to three times compared with conventional cryo-FM, while maintaining the specimen in a vitrified state for subsequent cryo-EM. Cryo-SOFI presents a general solution to the problem of specimen devitrification in super-resolution cryo-CLEM. It does not require a complex optical setup and can easily be implemented in any existing cryo-FM system.


Nanophotonics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 1971-1980 ◽  
Author(s):  
Luwei Wang ◽  
Wei Yan ◽  
Runze Li ◽  
Xiaoyu Weng ◽  
Jia Zhang ◽  
...  

AbstractWith a purely optical modulation of fluorescent behaviors, stimulated emission depletion (STED) microscopy allows for far-field imaging with a diffraction-unlimited resolution in theory. The performance of STED microscopy is affected by many factors, of which aberrations induced by the optical system and biological samples can distort the wave front of the depletion beam at the focal plane to greatly deteriorate the spatial resolution and the image contrast. Therefore, aberration correction is imperative for STED imaging, especially for imaging thick specimens. Here, we present a wave front compensation approach based on the genetic algorithm (GA) to restore the distorted laser wave front for improving the quality of STED images. After performing aberration correction on two types of zebrafish samples, the signal intensity and the imaging resolution of STED images were both improved, where the thicknesses were 24 μm and 100 μm in the zebrafish retina sample and the zebrafish embryo sample, respectively. The results showed that the GA-based wave front compensation approach has the capability of correction for both system-induced and sample-induced aberrations. The elimination of aberrations can prompt STED imaging in deep tissues; therefore, STED microscopy can be expected to play an increasingly important role in super-resolution imaging related to the scientific research in biological fields.


2017 ◽  
Vol 8 ◽  
pp. 2296-2306 ◽  
Author(s):  
Joseph R Pyle ◽  
Jixin Chen

Super-resolution imaging of single DNA molecules via point accumulation for imaging in nanoscale topography (PAINT) has great potential to visualize fine DNA structures with nanometer resolution. In a typical PAINT video acquisition, dye molecules (YOYO-1) in solution sparsely bind to the target surfaces (DNA) whose locations can be mathematically determined by fitting their fluorescent point spread function. Many YOYO-1 molecules intercalate into DNA and remain there during imaging, and most of them have to be temporarily or permanently fluorescently bleached, often stochastically, to allow for the visualization of a few fluorescent events per DNA per frame of the video. Thus, controlling the fluorescence on–off rate is important in PAINT. In this paper, we study the photobleaching of YOYO-1 and its correlation with the quality of the PAINT images. At a low excitation laser power density, the photobleaching of YOYO-1 is too slow and a minimum required power density was identified, which can be theoretically predicted with the proposed method in this report.


2019 ◽  
Vol 14 (2) ◽  
pp. 93-116 ◽  
Author(s):  
Shabnam Mohebbi ◽  
Mojtaba Nasiri Nezhad ◽  
Payam Zarrintaj ◽  
Seyed Hassan Jafari ◽  
Saman Seyed Gholizadeh ◽  
...  

Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document