US Commuting delays from tidal flooding worsen with sea level rise

Author(s):  
Mathew Hauer ◽  
Valerie Mueller ◽  
Glenn Sheriff

Abstract Although sea level rise is predicted to cause severe societal impacts at the end of the 21st century, few studies quantify the impacts coastal communities already face and empirical evidence regarding contemporary adaptive behaviors to these contemporary impacts remains limited. Here we combine complete road networks, historical and projected flood exposure, and the home/work locations of 500 million person-years for US coastal commuters to estimate the historic and projected delays due to SLR-related tidal flooding. We find that tidal flooding currently delays coastal commuters by an average of 22 minutes (+/- 4.4), increasing to 183 (+/- 33) to 643 (+/- 108) minutes by 2060 under current sea level rise scenarios. Furthermore, adaptive changes in residential and work locations from 2000-2015 reduced delays for coastal residents in 40% of U.S. counties. In the absence of policy, these commuting delays could lead to capital and residential flight from currently thriving coastal economic zones.

Author(s):  
Miguel Esteban ◽  
Hiroshi Takagi ◽  
Dyah Fatma ◽  
Takahito Mikami ◽  
Paolo Valenzuela ◽  
...  

According to the Intergovernmental Panel on Climate Change 5th Assessment Report, or IPCC 5AR (2013), sea level is rise (SLR) could be in the order of 26 to 98 cm by 2100. However, more onerous predictions, such as those set forth in recent probabilistic process-based models by Kopp et al. (2017), or Bars et al., (2017), indicate that SLR could be almost in the order of almost 3m by the end of the 21st century. As a result of sea level rise a number of authors have stated that many ports and coastal communities would be forced to relocate or attempt expensive adaptation countermeasures (Yamamoto and Esteban, 2016). However, most of the forecasted problems and their knock-on consequences on coastal communities remain hypothetical, despite a number of past examples of relative sea level rise due to earthquake induced subsidence or groundwater extraction (Jamero et al, 2016, 2017, Takagi et al., 2016, Esteban et al., 2017). In order to better understand the consequences of future sea level rise the authors have analysed the effects of two instances land subsidence that have taken place in the 20th and early 21st century, and the adaptation measures that ports and other low-lying areas have adopted in the northern Japanese region of Tohoku following the 2011 Earthquake Tsunami, and Jakarta in Indonesia (where groundwater extraction has been inducing rates of subsidence of 10-20cm per year in several parts of the city, Takagi et al, 2017). To date, the authors are not aware of any other work that has systematically attempted to learn from real examples of land subsidence as a proxy to study the effects of SLR on ports, despite a number of calls for more research to be done on the subject (Becker et al., 2013).


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


2013 ◽  
Vol 19 (5) ◽  
pp. 551-568 ◽  
Author(s):  
Brenda B. Lin ◽  
Yong Bing Khoo ◽  
Matthew Inman ◽  
Chi-Hsiang Wang ◽  
Sorada Tapsuwan ◽  
...  

Author(s):  
Michele Kekeh ◽  
Muge Akpinar-Elci ◽  
Michael J. Allen

2018 ◽  
Vol 97 (3) ◽  
pp. 79-127 ◽  
Author(s):  
Bert L.A. Vermeersen ◽  
Aimée B.A. Slangen ◽  
Theo Gerkema ◽  
Fedor Baart ◽  
Kim M. Cohen ◽  
...  

AbstractRising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region.Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl.We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5.For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1for the 5th percentile of the RCP2.6 scenario to 9.1mma−1for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1for the year 2100.We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report.


2012 ◽  
Vol 1 (2) ◽  
pp. 225-263 ◽  
Author(s):  
Tony George Puthucherril

Climate change and sea level rise are realities that are upon us and which will profoundly impact the lives and basic rights of millions of coastal residents all over the world. As the law stands both at the international and at certain national levels, the basic human rights of the climate displaced are not adequately protected. This paper identifies two possible displacement scenarios, based on the continued availability/non-availability of land in the face of sea level rise and other climate change impacts; namely, the sinking Small Island Developing States phenomeon, where land disappears and there is no surplus land to support habitation, and all other cases, where the coastal land is battered severely but it can be re-utilized through appropriate adaptation measures or even if coastal frontage land disappears there is still land available inland. On this basis, the paper proposes three possible solutions: (1) bilateral or regional treaties to facilitate resettlement of the inhabitants of sinking Small Island Developing States, (2) appropriate coastal climate change adaptation implemented via integrated coastal zone management and (3) creation of new arrangements under the international climate change regime to provide financial assistance and technological support to respond to both situations. Even though the primary focus of this paper is on coastal communities in South Asia, the lessons that it offers are relevant to other coastal contexts as well.


2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

<p>Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.</p><p>Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.</p><p>In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.</p>


2010 ◽  
Vol 37 (7-8) ◽  
pp. 1427-1442 ◽  
Author(s):  
Rune G. Graversen ◽  
Sybren Drijfhout ◽  
Wilco Hazeleger ◽  
Roderik van de Wal ◽  
Richard Bintanja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document