scholarly journals Shoot Proliferation, Callus Induction And Plant Regeneration In Tripsacum Laxum Nash

Author(s):  
Yuping Xiong ◽  
Jinhui Pang ◽  
Kunlin Wu ◽  
Jaime A. Teixeira Silva ◽  
Xinhua Zhang ◽  
...  

Abstract The peduncles of Tripsacum laxum Nash were used as explants to induce axillary shoots. Multiple shoots were proliferated on Murashige and Skoog (MS) medium to establish, for the first time, efficient shoot proliferation and plant in vitro regeneration systems. Optimal shoot proliferation medium was MS with 3.0 mg/L 6-benzyladenine (BA) and 0.2 mg/L α-naphthaleneacetic acid (NAA), resulting in a shoot proliferation coefficient of 11.0 within 45 d. Optimal rooting medium was MS with 0.1 mg/L NAA and/or 0.1 mg/L indole-3-butyric acid (IBA), inducing 100% root formation from shoots within 30 d. When young roots, leaf sheaths and shoot bases were used as explants, MS medium with 1.0 mg/L thidiazuron (TDZ) and 0.2 mg/L BA induced most shoots, with the least callus. Shoot bases induced beige-white callus and shoots directly on MS medium with 1.0 mg/L TDZ and 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), while leaf sheaths induced beige-white callus and shoots directly on MS medium with 1.0 mg/L TDZ and 0.2 mg/L BA. Rooted plantlets showed 99.3% survival when transplanted into a substrate of vermiculite: peat soil (1:3, v/v).

2017 ◽  
Vol 65 (1) ◽  
pp. 80 ◽  
Author(s):  
Bilan Huang ◽  
Li Xu ◽  
Kelie Li ◽  
Yunlu Fu ◽  
Zhiying Li

An in vitro protocol for Callerya speciosa (Champ.) Schot regeneration through embryogenesis was developed using the anthers as the explants. The late uninucleate stage of the microspore was optimal for the anther culture of C. speciosa. Embryonic callus was induced on a MS basal medium supplemented with 4.4 µM 6-benzylaminopurine (BA) and 9.04 µM 2,4-dichlorophenoxyacetic acid (2,4-D). Embryos were obtained on MS medium supplemented with 2.2 µM BA and 0.5 µM naphthaleneacetic acid (NAA). The highest percentage (16.7%) of embryos was achieved using the culture medium MS + 0.25 µM NAA + 1.1 µM BA. The highest percentage of embryos that developed into plants was 18.3%. However, haploid plants were not observed, which may have been due to the collection of the calli from the anther wall. The results presented here demonstrate the establishment of a highly efficient and rapid system for regenerating C. speciosa using anther cultures.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1150d-1150
Author(s):  
A. Smigocki ◽  
F. Hammerschlag

Immature `Redhaven' peach (Prunus persica L. Batsch) embryos were infected with Agrobacterium tumefaciens strain tms328::Tn5 carrying the functional cytokinin gene. Shoots were regenerated from callus grown on MS medium without added phytohormones and subsequently rooted on half-strength MS medium with 2.8 -naphthaleneacetic acid. These plants exhibited an increased frequency of branching in vitro. Low levels of cytokinin gene transcripts were detected in these cells by Northern analysis, and using an ELISA assay, the cytokinins zeatin and zeatinriboside were determined to be on the average 30-fold higher. From these results, the expression of the cytokinin gene appears to promote growth of cells in the absence of phytohormones thus serving as a marker for transformation and a promoter of morphogenesis without a 2,4-dichlorophenoxyacetic acid inductive step.


1993 ◽  
Vol 33 (3) ◽  
pp. 385 ◽  
Author(s):  
SS Speer

Eleven species of Australian Myrtaceae were evaluated for their ability to be cultured in vitro. Ten species produced axillary shoots (microcuttings) suitable for inducing roots in vitro. Microcuttings of 9 species successfully developed roots and were transferred to soil culture in a glasshouse, where plants grew normally. Nodal explants were grown on a modified Murashige and Skoog (MS) medium supplemented with varying concentrations of 6-benzylaminopurine (BAP), to study shoot proliferation. Beaufortia heterophylla Turcz. explants did not respond to BAP, and all explants eventually died. The rate of shoot proliferation for the other species varied according to BAP concentration. Microcuttings of 10 species were grown on a modified half-strength MS medium supplemented with varying concentrations of the auxins indole-3-butyric acid (IBA) and naphthaleneacetic acid (NAA), to induce root formation. An increase in root number and an associated decrease in root length was observed as the concentration of IBA and NAA was increased. Verticordia muelleriana E. Pritzel did not develop roots in any treatment. Chamelaucium uncinatum Schauer cv. Purple Pride, Kunzea parvifolia Schauer, K. pulchella (Lindl.) A. S. George, Leptospermum rotundifolium (Maiden & Betche) F. Rodway ex Cheel, Verticordia drunzmondii Schauer, V. graizdis J. L. Drumm., V. hughanii F. Muell., V. nzonaclelpha Turcz., and V. roeii Endl. microcuttings developed roots both with and without added auxins. Roots that formed on microcuttings at higher auxin concentrations were generally thicker and slower in growth.


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1482-1486 ◽  
Author(s):  
Huan Xiong ◽  
He Sun ◽  
Feng Zou ◽  
Xiaoming Fan ◽  
Genhua Niu ◽  
...  

Castanea henryi is an important woody grain tree species native to China. The objective of the current study was to find the suitable plant growth regulators (PGRs) and the optimal concentrations for direct organogenesis by using axillary shoots and cotyledonary nodes. Seeds were collected from the field, sterilized, and germinated in vitro. Axillary shoots and cotyledonary nodes of 3-week-old seedlings were used as explants. To find the suitable PGR for adventitious shoot induction, 0.5 mg·L–1 6-benzylaminopurine (6-BA), 0.1 mg·L–1 indole-3-acetic acid (IAA), 0.1 mg·L–1 2,4-dichlorophenoxyacetic acid (2,4-D), or 0.1 mg·L–1 1-naphthaleneacetic acid (NAA) was supplemented to Murashige and Skoog (MS) medium containing 0.65% agar and 3% sucrose. A high induction percentage of adventitious shoots (85.67%) was obtained from cotyledonary nodes supplemented with 0.1 mg·L–1 2,4-D. The type of explant influenced shoot proliferation rates and quality. Apical explants produced more and longer shoots than nodal segments. For shoot multiplication, 1 mg·L–1 6-BA + 0.05 mg·L–1 indole-3-butyric acid (IBA) supplemented with MS medium produced 12.33 and 6.25 shoots per explant, respectively, from apical and nodal explants. For shoot elongation and strengthening, 2 mg·L–1 6-BA + 0.05 mg·L–1 IBA supplemented with MS medium was the best combination, producing shoots with a mean length of 3.50 cm, a diameter of 0.46 cm, and about eight leaves per shoot. The greatest rooting of 76.70% and 11.33 roots per shoot was achieved when cultured in MS medium supplemented with 3.5% perlite + 1.5 mg·L–1 IBA. For acclimatization of the rooted plantlets in the greenhouse, a survival rate of 80% was achieved. This protocol—from multiplication to acclimation—is helpful to realize mass propagation of high-quality trees of chinquapin for increasing production and nut quality.


HortScience ◽  
1996 ◽  
Vol 31 (7) ◽  
pp. 1225-1228 ◽  
Author(s):  
Rida A. Shibli ◽  
M.A.L. Smith

Ohelo (V. pahalae Skottsb.) and bilberry (V. myrtillus L.) shoots were regenerated via direct organogenesis from whole leaves and leaf sections and also from hypocotyl explants of bilberry. Explants preincubated for 1 to 2 weeks in darkness yielded ≈75% regeneration frequencies and the highest number of regenerating shoots/explant on TDZ-supplemented media (0.9 to 2.7 μm). When 2iP or zeatin were substituted as the cytokinin source, frequencies of regeneration and shoot productivity were significantly lower. Explants held under constant illumination (no dark pretreatment) had significantly lower regeneration frequencies in all tested cytokinin-supplemented media. 2,4-D stimulated callus formation, but did not support regeneration from vegetative explants. Cells from callus and suspension cultures did not exhibit regeneration in any of the media that supported organogenesis from leaves. Regenerants were successfully micropropagated, although callus formation caused by zeatin and high 2iP levels interfered with shoot proliferation. Zeatin induced hyperhydricity in shoots from both species, but more severely in ohelo. Ex vitro rooting after treatment with 4.9 μm IBA or 5.4 μm NAA was 95% and 60% successful for bilberry and ohelo, respectively, and plants were readily acclimatized after an interval in a fog chamber. Bilberry microshoots also rooted in vitro in the absence of growth regulator treatment. Chemical names used: 1H-indole-3-butanoic acid (IBA); N-(3-methyl-2-butenyl)-1-H-purine-6-amine (2iP); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA); thidiazuron=1-phenyl-3-(1,2,3-thiadiazio-5-yl)urea (TDZ); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-(4-hydroxy-3-methylbut-2-enylamino) purine (zeatin).


2018 ◽  
Vol 22 (03) ◽  
pp. 82-88
Author(s):  
Zavzandulam М ◽  
Buyanchimeg B ◽  
Enkhchimeg V

Altain onion (Allium altaicum Pall.) grows wildly under different ecological conditions and one of the listed rare plant in Red Data Book of Mongolia. Allium altaicum pall belong to a member of the onion family (Alliaceae) and has been used for both culinary and traditional medicine and a perennial herb.The purpose of this research is to get micropropogated plants in in vitro condition from Mongolian the Allium altaicum Pall tissue culture. Allium altaicum Pall. regeneration from zygotic embryo was 70% in MS medium with 0.5 mg/l 1-Naphthaleneacetic acid, 0.2 mg/l kinetin compare to control. Convenient condition for primary callus induction observed in MS medium with 1 mg/l 2,4-dichlorophenoxyacetic acid, 0.6 mg/l 6-benzylaminopurine, 2mg/l glycine by 50.4%. Regeneration of callus induction was 61.3% and somatic embryos formed plantlets on regeneration 0.1 мг/л 2,4-D 0.1 mg/l 2,4-dichlorophenoxyacetic acid, 1 мг/л BAP 1 mg/l 6-benzylaminopurine.


1984 ◽  
Vol 62 (7) ◽  
pp. 1393-1397 ◽  
Author(s):  
M. D. Zhou ◽  
T. T. Lee

The callus-promoting activity of most commonly known as well as some rarely tested auxins was compared with that of 2,4-dichlorophenoxyacetic acid (2,4-D) for in vitro culture of the excised embryo of spring and winter wheat (Triticum aestivum L.), cv. Chinese Spring and cv. Fredrick. Different auxins in a concentration range from 1 to 50 μM showed widely different activities. Also the two wheat cultivars responded differently to the auxins. When rapid callus formation with limited root growth was used as the basis for comparison, 2-(2-methyl-4-chlorophenoxy)propionic acid (2-MCPP), α-naphthaleneacetic acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6,trichloropicolinic acid (picloram), γ-(2,4-dichlorophenoxy)butyric acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid, in the order of effectiveness, were superior to 2,4,-D for callus induction from the embryo of 'Chinese Spring,' although the concentration required was higher than that of 2,4-D. For the winter wheat 'Fredrick,' however, only picloram, dicamba, and 2-MCPP performed as well as 2,4-D. All auxins tested promoted shoot growth; 2-methyl-4-chlorophenoxypropionic acid was most effective for 'Chinese Spring,' whereas picloram was most effective for 'Fredrick.'


2016 ◽  
Vol 24 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Mafatlal M. Kher ◽  
Deepak Soner ◽  
Neha Srivastava ◽  
Murugan Nataraj ◽  
Jaime A. Teixeira da Silva

Abstract Clerodendrum phlomidis L. f. is an important medicinal plant of the Lamiaceae family, particularly its roots, which are used for various therapeutic purposes in a pulverized form. The objective of this study was to develop a standard protocol for axillary shoot proliferation and rooting of C. phlomidis for its propagation and conservation. Nodal explants were inoculated on Murashige and Skoog (MS) medium that was supplemented with one of six cytokinins: 6-benzyladenine, kinetin, thidiazuron, N6-(2-isopentenyl) adenine (2iP), trans-zeatin (Zea) and meta-topolin. Callus induction, which was prolific at all concentrations, formed at the base of nodal explants and hindered shoot multiplication and elongation. To avoid or reduce callus formation with the objective of increasing shoot formation, the same six cytokinins were combined with 4 μM 2,3,5-tri-iodobenzoic acid (TIBA) alone or in combination with 270 μM adenine sulphate (AdS). Nodal explants that were cultured on the medium supplemented with 9.12 μM Zea, 4 μM TIBA and 270 μM AdS produced significantly more and longer shoots than on medium without TIBA and AdS. Half-strength MS medium supplemented with 8.05 μM α-naphthaleneacetic acid was the best medium for root formation. Most (75%) in vitro rooted plantlets were successfully acclimatized under natural conditions.


2016 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Lazarus Agus Sukamto

Nepenthes albomarginata Lobb ex Lindl. is a carnivorous plant, distributes in several regions in Indonesia. The plant population decreases drastically because of over exploitation and ruining nature habitat. Plant propagation by nature and cutting are not enough to rehabilitation its population. In vitro culture of N. albomarginata was carried out using plantlets grown from the seeds in vitro. Plantlets were cut to became two part explants, consisted of shoot tip and under-shoot tip cuttings. These cutting explants were grown on Murashige & Skoog (MS) media with addition of plant growth regulators of 6-benzylaminopurine (BA), combined with or without-naphthalene acetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) at 1 mg/l. Shoot tip cuttings of N. albomarginata formed double multiple shoot 25,00% on control; formed triple multiple shoots 25,00% onBA 1 mg/l treatment; formed callus 37,50%, triple or quartet shoots 25,00% and rooted plantlets 25,00% on BA 1 mg/l + NAA 1 mg/l treatment. The under-shoot tip cuttings ofN. albomarginata formed double – triple shoots 25,00% and rooted plantlets 37,50% on control; formed double – triple shoots 25,00% and rooted plantlets 12,50% on BA 1 mg/ltreatment; formed callus 12,50%, double - pentacle shoots 37,50% and rooted plantlets 25,00% on BA 1 mg/l + NAA 1 mg/l treatment. 2,4-D 1 mg/l or its combined with BA 1mg/l treatment caused deadly shoot tip or under-shoot tip explants. The combination of BA 1 mg/l + NAA 1 mg/l was the best treatment for producing callus, multiple shootsand rooted plantlets of N. albomarginata.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Weihong He ◽  
Dan Wang ◽  
Nan Yang ◽  
Dingding Cao ◽  
Xiaofeng Chen ◽  
...  

Sesuvium portulacastrum L., a member of the family Aizoaceae, is an important coastal halophyte. Due to its adaptability to salinity and heavy metals, S. portulacastrum has now been widely used for the phytoremediation of saline soils and wastewater and the protection of the coast from erosion. The increasing use of this plant requires a large number of propagules. Stem cutting propagation and seed germination cannot meet this demand, and such propagations can initiate and spread diseases. A recent occurrence of Bipolaris sesuvii J.Z. Zhang and Gibbago trianthemae E.G. Simmons in S. portulacastrum resulted in the substantial loss of the plants during the remediation of aquaculture wastewater. Thus, there is an urgent need for establishing efficient methods of propagating disease-free starting materials. In the present study, we evaluated different growth regulators in the induction of axillary shoots from nodal explants cultured on Murashige and Skoog medium and identified that zeatin (ZT) and α-naphthaleneacetic acid (NAA) was an appropriate combination for inducing high numbers of axillary shoots. The nodal explants were then cultured on MS medium supplemented with different concentrations of ZT and NAA, and the combination of ZT at 1.0 mg L−1 and NAA at 0.3 mg L−1 induced more than 12 axillary shoots per explant. The axillary shoots were excised to produce microcuttings or microshoots, which were rooted on half-strength MS medium supplemented with different concentrations of indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA). The results showed that IBA at 0.6 mg L−1 induced 91.7% of the microcuttings to root with root numbers of over 36 per cutting. The rooted plantlets were healthy and true-to-type and grew vigorously in plug trays or plastic containers with a 100% survey rate in a greenhouse. Thus, this established protocol could be used for the rapid propagation of genetically identical and disease-free plants of S. portulacastrum for phytoremediation and the protection of shoreline soils from erosion.


Sign in / Sign up

Export Citation Format

Share Document