shoot culture
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 2)

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Weihong He ◽  
Dan Wang ◽  
Nan Yang ◽  
Dingding Cao ◽  
Xiaofeng Chen ◽  
...  

Sesuvium portulacastrum L., a member of the family Aizoaceae, is an important coastal halophyte. Due to its adaptability to salinity and heavy metals, S. portulacastrum has now been widely used for the phytoremediation of saline soils and wastewater and the protection of the coast from erosion. The increasing use of this plant requires a large number of propagules. Stem cutting propagation and seed germination cannot meet this demand, and such propagations can initiate and spread diseases. A recent occurrence of Bipolaris sesuvii J.Z. Zhang and Gibbago trianthemae E.G. Simmons in S. portulacastrum resulted in the substantial loss of the plants during the remediation of aquaculture wastewater. Thus, there is an urgent need for establishing efficient methods of propagating disease-free starting materials. In the present study, we evaluated different growth regulators in the induction of axillary shoots from nodal explants cultured on Murashige and Skoog medium and identified that zeatin (ZT) and α-naphthaleneacetic acid (NAA) was an appropriate combination for inducing high numbers of axillary shoots. The nodal explants were then cultured on MS medium supplemented with different concentrations of ZT and NAA, and the combination of ZT at 1.0 mg L−1 and NAA at 0.3 mg L−1 induced more than 12 axillary shoots per explant. The axillary shoots were excised to produce microcuttings or microshoots, which were rooted on half-strength MS medium supplemented with different concentrations of indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA). The results showed that IBA at 0.6 mg L−1 induced 91.7% of the microcuttings to root with root numbers of over 36 per cutting. The rooted plantlets were healthy and true-to-type and grew vigorously in plug trays or plastic containers with a 100% survey rate in a greenhouse. Thus, this established protocol could be used for the rapid propagation of genetically identical and disease-free plants of S. portulacastrum for phytoremediation and the protection of shoreline soils from erosion.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6823
Author(s):  
Barbara Thiem ◽  
Dariusz Kruszka ◽  
Natalia Turowska ◽  
Elwira Sliwinska ◽  
Viktor Berge ◽  
...  

Linnaea borealis L. (Twinflower)—a dwarf shrub in the Linnaeeae tribe of Caprifoliaceae family—is distributed across the Northern Hemisphere. By means of this study, a reliable protocol for efficient micropropagation of uniform L. borealis L. var. borealis plantlets has been provided for the first time; callus culture was also established. Different initial explants, types of cultures, media systems, and plant growth regulators in Murashige and Skoog (MS) media were tested. Agitated shoot cultures in the liquid media turned out to be the best system for the production of sustainable plant biomass. After stabilization of the callus lines, the highest growth index (c.a. 526%) was gained for callus maintained on MS enriched with picloram. TLC and UHPLC-HESI-HRMS analysis confirmed the presence of phenolic acids and flavonoids, and for the first time, the presence of iridoids and triterpenoid saponins in this species. Multiplication of L. borealis shoot culture provides renewable raw material, allowing for the assessment of the phytochemical profile, and, in the future, for the quantitative analyses and the studies of the biological activity of extracts, fractions, or isolated compounds. This is the first report on in vitro cultures of traditionally used L. borealis rare taxon and its biosynthetic potential.


2021 ◽  
Vol 913 (1) ◽  
pp. 012016
Author(s):  
A Wulansari ◽  
A Purwito ◽  
D Sukma ◽  
TM Ermayanti

Abstract Taro genetic improvement through polyploidy induction is expected to be tolerant to abiotic stress. Several studies have shown that polyploidy plants have a higher adaptability to dry environments. In vitro selection technique for evaluation of plant tolerance to drought stress can be done by applying polyethylene glycol (PEG) as a selection agent. The aim of the research was to investigate the growth response of diploid and tetraploid taro shoot culture to drought stress using PEG. The experiment was conducted using a completely randomized design with two factors. The first factor was the concentration of PEG at 0, 5, 10, 15 and 20%. The second factor was Bentul taro clones which were 1 diploid clone and 2 tetraploid clones (clones 4.6.3 and 5.4.4). PEG was added to liquid MS medium containing 2 mg/l BAP. Observations of growth variables were carried out every week until the six weeks of culture. Fresh and dry weights, mortality percentage and proline content were determined at six weeks of culture. The results showed that the addition of PEG in liquid medium significantly affected the number of leaves, petiole length, number of roots, fresh and dry weights, as well as shoot mortality percentage. Differences in clones significantly affected the number of leaves, fresh and dry weights. The two factors tested (PEG and clones), gave an interaction on the number of leaves, fresh and dry weights. The proline content in all diploid and tetraploid clones showed an increase with increasing PEG concentration. The LC50 value in diploid clones was 9.82%, in tetraploid clones 4.6.3 and 5.4.4 were 14.14 and 15.45%, respectively. The results showed that PEG at 10% and 15% could be used for in vitro selection to drought stress both for diploid and tetraploid taro.


Author(s):  
Izabela Grzegorczyk-Karolak ◽  
Paulina Staniewska ◽  
Liwia Lebelt ◽  
Dorota G. Piotrowska

AbstractSalvia viridis is a rich source of pharmacologically-important polyphenolic compounds with anti-inflammatory, antioxidant and anticancer activities. The aim of the present study was to optimise the large-scale cultivation of sage shoots in the Plantform bioreactor. It evaluated the effect of culture duration (two or three weeks), the use of a semi-continuous system and the immersion frequency in a liquid medium (every 80 or 170 min) on the growth and accumulation of secondary metabolites. The content of bioactive phenolic acids and phenylethanoids in the obtained material was determined using HPLC. The most efficient growth parameters, expressed as fresh (26.99 g) and dry weight (3.51 g) as well as proliferation ratio (18.6), were observed for shoots grown in a fed-batch system, immersed every 80 min; this approach yielded a 33-fold biomass increase within four weeks. However, the most efficient production of bioactive compounds was achieved for shoots grown for three weeks in a batch system, immersed every 80 min: total phenolic acid, total phenylethanoid and total phenol contents of 18.3, 11.4 and 29.7 mg/g DW. In these conditions, within three weeks, total phenolic acid level was almost 10 times higher than that found in the aerial parts of four-month-old soil-grown plants with a similar phenylethanoid level. Hence, the described S. viridis shoot culture cultivated in the Plantform bioreactor may be an alternative efficient source of plant material rich in valuable compounds.


2021 ◽  
Vol 27 (3) ◽  
pp. 408-416
Author(s):  
Helena Jacoba du Plessis ◽  
Roumiana Vassileva Nikolova ◽  
Bronwyn Anne Egan ◽  
Riana Kleynhans

Abstract In vivo and in vitro grown plants of Hibiscus coddii subsp. barnardii were used as explant source for establishment of in vitro cultures. Nodal shoot explants derived from in vivo grown plants, both naturally and under controlled environmental conditions, showed high sensitivity to the surface disinfection treatment and poor survival in in vitro culture. In vitro grown seedlings proved successful as aseptic source of apical and basal shoot explants to establish contamination-free in vitro cultures. Sprouting of axillary buds was observed on 90% of apical shoot explants after four weeks of culture on full strength, plant growth regulator (PGR)-free Murashige and Skoog (MS) medium. However, further proliferation of short shoots, limited to the bud sprout at the explant base, occurred on only 50% of these explants. In contrast, all basal shoot explants attained 3-5 single primary axillary shoots (30-40 mm in length) while a clump of short (5-10 mm) shoots also formed at the base in 60% of these explants. In both explant types, addition of 0.25-1 mg L-1 6-Benzylaminopurine (BAP) to the MS medium resulted in a low frequency (10%-60%) of explants with short shoots (5-10 mm) that showed no further elongation. Moreover, explants cultured in the presence of BAP showed a high frequency of callus formation (up to 90%) and low survival (20%-60%). A lower frequency of callus formation (30%-40%) and higher survival (90%-100%) of both explant types occurred on BAP-free medium. Further subculturing of primary and secondary axillary shoots onto fresh MS medium (with and without BAP) did not improve shoot multiplication. Regenerated plantlets from PGR-free MS medium were successfully acclimatized and hardened-off.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1651
Author(s):  
Dijana Krstić-Milošević ◽  
Nevena Banjac ◽  
Teodora Janković ◽  
Dragan Vinterhalter ◽  
Branka Vinterhalter

In vitro shoot culture of the endangered medicinal plant Gentianella lutescens was established from epicotyl explants cultured on MS basal medium with 0.2 mg L−1 6-benzylaminopurine (BA) and evaluated for xanthones content for the first time. Five shoot lines were obtained and no significant variations in multiplication rate, shoot elongation, and xanthones profile were found among them. The highest rooting rate (33.3%) was achieved by shoots treated for 2 days with 5 mg L−1 indole-3-butyric acid (IBA) followed by cultivation in liquid PGR-free ½ MS medium for 60 days. HPLC analysis revealed the lower content of xanthones—mangiferin, bellidifolin, demethylbellidifolin, demethylbellidifolin-8-O-glucoside and bellidifolin-8-O-glucoside—in in vitro cultured shoots compared to wild growing plants. The increasing concentration of sucrose, sorbitol and abiotic elicitors salicylic acid (SA), jasmonic acid (JA) and methyl jasmonate (MeJA) altered shoot growth and xanthone production. Sucrose and sorbitol applied at the highest concentration of 233.6 mM increased dry matter percentage, while SA at 100 μM promoted shoot growth 2-fold. The increased sucrose concentration enhanced accumulation of xanthones in shoot cultures 2–3-fold compared to the control shoots. Elicitors at 100–300 μM increased the accumulation of mangiferin, demethylbellidifolin-8-O-glucoside, and bellidifolin-8-O-glucoside almost equally, while MeJA at the highest concentration of 500 μM enhanced amount of aglycones demethylbellidifolin and bellidifolin 7-fold compared to the control. The obtained results facilitate conservation of G. lutescens and pave the way for further research on large-scale shoot propagation and production of pharmacologically active xanthones.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1561
Author(s):  
Hyung-Eun Kim ◽  
Jong-Eun Han ◽  
Hyoshin Lee ◽  
Ji-Hye Kim ◽  
Hyun-Hee Kim ◽  
...  

Cnidium officinale is an important medicinal crop grown in Asia for its pharmacological properties. In this study, tetraploid breeding was conducted to increases the content of medicinal compound and tolerance to the environmental conditions using in vitro shoot culture of C. officinale. For this, we generated tetraploid C. officinale plants using oryzalin, a chromosome doubling agent, and compared the morphological traits, cytological characteristics, and heat stress-responsive gene expression levels between tetraploid and diploid genotypes. Chromosome doubling efficiency was the highest in plantlets treated with 4.0 mg∙L−1 oryzalin for 2 days. Compared with diploids, the plant height of tetraploids was reduced, while the petiole diameter was increased by approximately 39%. The dry matter of tetraploid leaves was significantly higher than that of diploid leaves. Compared with diploids, tetraploids showed higher chloroplast number and stomatal complex size but lower chlorophyll and carotenoid contents. The phenolic content of tetraploid plantlets was significantly higher than that of diploid plantlets. Contents of naringin as well as salicylic acid and gentisic acid, which are strong antioxidant compounds, were dramatically increased upon tetraploidization. Interestingly, liquid chromatography–mass spectrometry (LC–MS) analyses revealed increased levels of senkyunolide F and phthalide in tetraploid roots but not in tetraploid or diploid leaves.


Author(s):  
Jan Klein ◽  
Elisa Horn ◽  
Mona Ernst ◽  
Tim Leykauf ◽  
Tamara Leupold ◽  
...  

Abstract Key message Studying RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) in 5β-cardenolide formation. Abstract Progesterone 5β-reductases (P5βR) are assumed to catalyze the reduction of progesterone to 5β-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5β-cardenolides. P5βRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5βRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5βR1 (AY585867.1) and DlP5βR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5β-cardenolide formation, we here established several RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5βR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5βR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5βR2-RNAi lines but not in Dl P5βR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5βR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).


2021 ◽  
Vol 18 (1) ◽  
pp. 65-78
Author(s):  
Deritha Ellfy Rantau ◽  
Dyah Retno Wulandari ◽  
Tri Muji Ermayanti ◽  
Rudiyanto Rudiyanto ◽  
Betalini Widhi Hapsari ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document