scholarly journals High Throughput Printing of Two-Dimensional Materials into Wafer-scale Three-dimensional Architectures

Author(s):  
Xuan Wei ◽  
Chia-Ching Lin ◽  
Christine Wu ◽  
Ang-Yu Lu ◽  
Nadeem Qaiser ◽  
...  

Abstract Architected materials that actively respond to external stimuli hold tantalizing prospects for applications in energy storage, harvesting, wearable electronics and bioengineering. Transition metal dichalcogenides (TMDs) which represent the three-atom-thick, two-dimensional (2D) building blocks, are excellent candidates but have found limited success compared to metallic, inorganic, and organic counterparts due to the lack of up-scalable manufacturing. Here we report the high-throughput printing of 2D TMDs into wafer-scale 3D architectures with structural hierarchy across seven orders of magnitude between critical feature sizes. Anode made of 3D MoS2 architectures comprises the concentric vortex-like intricacy that unites technological merits from architecture, mechanical engineering, and electrochemistry not found in its bulk or exfoliated/epitaxy counterparts. The result is, contrary to expectation, the high-rate, high-capacity, and high-loading lithium (Li)-storage, surpassing those state-of-the-art anode designs while the technique offers an evaporation-like simplicity for industrial scalability.

2010 ◽  
Vol 49 (13) ◽  
pp. 5971-5976 ◽  
Author(s):  
Hu Zhou ◽  
Ai-Hua Yuan ◽  
Su-Yan Qian ◽  
You Song ◽  
Guo-Wang Diao

RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19707-19711 ◽  
Author(s):  
Min-A Kang ◽  
Seongjun Kim ◽  
In-Su Jeon ◽  
Yi Rang Lim ◽  
Chong-Yun Park ◽  
...  

Two-dimensional transition metal dichalcogenides (TMDs) such as molybdenum disulfide, have recently attracted attention for their applicability as building blocks for fabricating advanced functional materials.


2015 ◽  
Vol 6 ◽  
pp. 632-639 ◽  
Author(s):  
Ping Du ◽  
David Bléger ◽  
Fabrice Charra ◽  
Vincent Bouchiat ◽  
David Kreher ◽  
...  

Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp2)-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.


2018 ◽  
Vol 122 (27) ◽  
pp. 15118-15124 ◽  
Author(s):  
Dong Fan ◽  
Shaohua Lu ◽  
Yundong Guo ◽  
Xiaojun Hu

2016 ◽  
Vol 72 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Xiang-Wen Wu ◽  
Shi Yin ◽  
Wan-Fu Wu ◽  
Jian-Ping Ma

Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi-rigid organic ligands containing 1,2,4-triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi-rigid ligands in the self-assembly process than by making use of rigid ligands. A new semi-rigid ligand, 3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic saltsM(NO3)2(M= Ni and Zn, respectively) in mixed solvents. In (I), two NiIIcations with the same coordination environment are linked byLligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two-dimensional network in the crystallographicacplaneviaN—H...O, O—H...N and O—H...O hydrogen bonds, and neighbouring two-dimensional planes are parallel and form a three-dimensional structureviaπ–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnIIcations. The ZnIIcations are bridged byLligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one-dimensional nanotubeviaO—H...O and N—H...O hydrogen bonds along the crystallographicadirection, and the other constructs zero-dimensional molecular cagesviaO—H...O and N—H...O hydrogen bonds. They are interlinked into a two-dimensional network in theacplane through extensive N—H...O hydrogen bonds, and a three-dimensional supramolecular architecture is formedviaπ–π interactions between the centroids of the benzene rings of the quinoline ring systems.


Author(s):  
Songwuit Chanthee ◽  
Wikorn Punyain ◽  
Supawadee Namuangrak ◽  
Kittipong Chainok

The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2N,N′)tetracyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2N,N′)di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2N:N′)(ethylenediamine-κ2N,N′)cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2′-bipy)(CN)4]−units (2,2′-bipy is 2,2′-bipyridine) are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to theabplane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure withR44(8) andR66(12) graph-set ring motifs, while the disordered [N(CH3)4]+cations lie above and below the water chains, and the packing is stabilized by weak C—H...O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional networkviaO—H...O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy)(CN)4]−building blocks, forming anR44(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2′-bipy)(CN)4Cd(en)2]}nlayer structure (en is ethylenediamine) extending parallel to (010) and constructed from {[Fe(2,2′-bipy)(CN)4Cd(en)]}nchains interlinked by bridging en ligands at the Cd atoms. Classical O—H...N and N—H...O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connectedviaπ–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.


Sign in / Sign up

Export Citation Format

Share Document