High resolution ancient sedimentary DNA shows that alpine plant biodiversity is a result of human land use

Author(s):  
Sandra Garcés-Pastor ◽  
Eric Coissac ◽  
Sebastien Lavergne ◽  
Christoph Schwoerer ◽  
Jean-Paul Theurillat ◽  
...  

Abstract Alpine areas are well known biodiversity hotspots, but their future may be threatened by expanding forest and changing human land use. Here, we reconstructed past vegetation, climate, and livestock over the past ~ 12,000 years from Lake Sulsseewli (European Alps), based on sedimentary ancient DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3,923 plant species), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa. The vegetation mainly responded to temperature during the first half of the Holocene, while human activity drove changes from 6 ka onwards. Land-use shifted from episodic grazing (Neolithic, Bronze Age) to agropastoral intensification (Medieval Age). This prompted a coexistence of species typically found at different elevational belts, thereby increasing plant richness to levels that characterise present-day alpine diversity. Our results indicate that traditional agropastoral activities should be maintained to prevent reforestation and preserve alpine plant biodiversity.

Author(s):  
Tiziana Pedrotta ◽  
Erika Gobet ◽  
Christoph Schwörer ◽  
Giorgia Beffa ◽  
Christoph Butz ◽  
...  

AbstractKnowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100–7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000–4,500 cal bp. Subsequently around 4,000–3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500–3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).


2017 ◽  
Vol 114 (36) ◽  
pp. 9575-9580 ◽  
Author(s):  
Jonathan Sanderman ◽  
Tomislav Hengl ◽  
Gregory J. Fiske

Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.


Author(s):  
Lydia L. Mackenzie ◽  
Kunshan Bao ◽  
Steve Pratte ◽  
Anna‐Marie Klamt ◽  
Rongqin Liu ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 1953-1972 ◽  
Author(s):  
David M. Theobald ◽  
Christina Kennedy ◽  
Bin Chen ◽  
James Oakleaf ◽  
Sharon Baruch-Mordo ◽  
...  

Abstract. Data on the extent, patterns, and trends of human land use are critically important to support global and national priorities for conservation and sustainable development. To inform these issues, we created a series of detailed global datasets for 1990, 2000, 2010, and 2015 to evaluate temporal and spatial trends of land use modification of terrestrial lands (excluding Antarctica). We found that the expansion of and increase in human modification between 1990 and 2015 resulted in 1.6 M km2 of natural land lost. The percent change between 1990 and 2015 was 15.2 % or 0.6 % annually – about 178 km2 daily or over 12 ha min−1. Worrisomely, we found that the global rate of loss has increased over the past 25 years. The greatest loss of natural lands from 1990 to 2015 occurred in Oceania, Asia, and Europe, and the biomes with the greatest loss were mangroves, tropical and subtropical moist broadleaf forests, and tropical and subtropical dry broadleaf forests. We also created a contemporary (∼2017) estimate of human modification that included additional stressors and found that globally 14.6 % or 18.5 M km2 (±0.0013) of lands have been modified – an area greater than Russia. Our novel datasets are detailed (0.09 km2 resolution), temporal (1990–2015), recent (∼2017), comprehensive (11 change stressors, 14 current), robust (using an established framework and incorporating classification errors and parameter uncertainty), and strongly validated. We believe these datasets support an improved understanding of the profound transformation wrought by human activities and provide foundational data on the amount, patterns, and rates of landscape change to inform planning and decision-making for environmental mitigation, protection, and restoration. The datasets generated from this work are available at https://doi.org/10.5281/zenodo.3963013 (Theobald et al., 2020).


Flora ◽  
2020 ◽  
Vol 267 ◽  
pp. 151591 ◽  
Author(s):  
Miklós Kertész ◽  
Gábor Ónodi ◽  
Zoltán Botta-Dukát ◽  
Barbara Lhotsky ◽  
Sándor Barabás ◽  
...  

2018 ◽  
Vol 504 ◽  
pp. 162-169 ◽  
Author(s):  
Zhihai Tan ◽  
Longjiang Mao ◽  
Yongming Han ◽  
Duowen Mo ◽  
Haibin Gu ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
John M. Marston ◽  
Canan Çakırlar ◽  
Christina Luke ◽  
Peter Kováčik ◽  
Francesca G. Slim ◽  
...  
Keyword(s):  
Land Use ◽  

The ICRC Library is home to unique collections retracing the parallel development of humanitarian action and law during the past 150+ years. With the core of these collections now digitized, this reference library on international humanitarian law (IHL) and the International Committee of the Red Cross (ICRC) is a resource available to all, anytime, anywhere.


2021 ◽  
pp. 1-16
Author(s):  
Mark Haughton

Despite growing strength in recent decades, an archaeology of childhood has often been overlooked by those studying prehistory. This is concerning because communities are enlivened by their children, and conversations with and about children often provide a critical arena for the discussion of aspects of societies which prehistorians are comfortable addressing, such as social structure, identity and personhood. Through an exploration of childhood as expressed in the Earlier Bronze Age burials from Ireland, this article demonstrates that neither written sources, artistic depictions nor toys are necessary to speak of children in the past. Indeed, an approach which tacks between scales reveals subtle trends in the treatment of children which speak to wider shared concerns and allows a reflection on the role of children in prehistory.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 195 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Arne Strid ◽  
Panayotis Dimopoulos

Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.


Sign in / Sign up

Export Citation Format

Share Document