lake productivity
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hannah Adams ◽  
Jane Ye ◽  
Bhaleka Persaud ◽  
Stephanie Slowinski ◽  
Homa Kheyrollah Pour ◽  
...  

Abstract. Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads and mixing regime, are increasingly altered by climate warming and land-use changes. To better understand the environmental drivers of lake productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water quality parameters and surface solar irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, predominantly located north of 40°. Long-term trends show that the algal growth windows have been occurring earlier in the year, thus potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset is also used to analyze the relationship between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability in spring but not in summer and fall, consistent with a switch to top-down control of summer and fall algal communities. The growth window dataset can be used to analyze trends in lake productivity across the northern hemisphere or at smaller, regional scales. We present some general trends in the data and encourage other researchers to use the open dataset for their own research questions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lara Hughes-Allen ◽  
Frédéric Bouchard ◽  
Christine Hatté ◽  
Hanno Meyer ◽  
Lyudmila A. Pestryakova ◽  
...  

A multi-proxy paleolimnological analysis of a sediment core sequence from Lake Malaya Chabyda in Central Yakutia (Eastern Siberia, Russia) was conducted to investigate changes in lake processes, including lake development, sediment and organic carbon accumulation, and changes in primary productivity, within the context of Late Pleistocene and Holocene climate change. Age-depth modeling with 14C indicates that the maximum age of the sediment core is ∼14 cal kBP. Three distinct sedimentary units were identified within the sediment core. Sedimentological and biogeochemical properties in the deepest section of the core (663–584 cm; 14.1–12.3 cal kBP) suggests a lake environment mostly influenced by terrestrial vegetation, where organic carbon accumulation might have been relatively low (average ∼100 g OC m−2 a−1), although much higher than the global modern average. The middle section of the core (584–376 cm; 12.3–9.0 cal kBP) is characterized by higher primary productivity in the lake, much higher sedimentation, and a remarkable increase in OC delivery (average ∼300 g OC m−2 a−1). Conditions in the upper section of the core (<376 cm; < 9.0 cal kBP) suggest high primary productivity in the lake and high OC accumulation rates (average ∼200 g OC m−2 a−1), with stable environmental conditions. The transition from organic-poor and mostly terrestrial vegetation inputs (TOC/TNatomic ratios ∼20) to conditions dominated by aquatic primary productivity (TOC/TNatomic ratios <15) occurs at around 12.3 cal kBP. This resulted in an increase in the sedimentation rate of OC within the lake, illustrated by higher sedimentation rates and very high total OC concentrations (>30%) measured in the upper section of the core. Compact lake morphology and high sedimentation rates likely resulted in this lake acting as a significant OC sink since the Pleistocene-Holocene transition. Sediment accumulation rates declined after ∼8 cal k BP, however total OC concentrations were still notably high. TOC/TNatomic and isotopic data (δ13C) confirm the transition from terrestrial-influenced to aquatic-dominated conditions during the Early Holocene. Since the mid-Holocene, there was likely higher photosynthetic uptake of CO2 by algae, as suggested by heavier (isotopically enriched) δ13C values (>−25‰).


Author(s):  
Claudia Dresti ◽  
Andrea Fenocchi ◽  
Diego Copetti

In this paper we review a significant sample of the modelling studies carried out on medium-to-large deep European perialpine lakes (MLDEPLs). The reviewed bibliographic corpus was obtained querying Elsevier’s Scopus® database with a tailored search string on 8 January 2021. Results were filtered, accepting only journal papers written in English dealing with natural lakes having surface area > 10 km2. A list of 75 works was obtained, published between 1986 and 2021. Most studies have been carried out on Swiss lakes (44 out of 75 papers), Lake Geneva being the most investigated environment. A significant positive correlation was found between lake surface area and volume and the number of dedicated papers, suggesting that scientific attention is higher for environments characterised by large dimensions and relevant socio-economic interests. Both the number of papers and their citation count have experienced an exponential growth in time, pointing to a rising interest in quantitative modelling applications, but also to the increasing availability and ease of use of numerical modelling tools. Among the 75 selected papers, 55 employ a hydrodynamic driver, used alone or coupled with an ecological module, while the remnant 20 works adopt an ecological-only model. Among the papers employing hydrodynamic models, the use of three-dimensional (3D) drivers is surprisingly slightly more frequent (28 papers) than that of one-dimensional (1D) ones (26 papers), with most 3D applications having been published in the last 2011-2020 decade (24 papers). This reflects the interest on the hydrodynamic processes leading to the observed spatial heterogeneities in the biochemical properties of the MLDEPLs. However, coupling of ecological modules with 3D hydrodynamic drivers, to directly simulate these phenomena, is still restricted (2 papers) compared to that of 1D hydrodynamic drivers (8 papers), due to calibration and computational difficulties, which could be strongly reduced by future research achievements. Nevertheless, 1D models allow performing long-term prognoses considering multiple climate change and watershed management scenarios, due to their much smaller computational burden. The largest group of works dealing with ecological-only models (6 papers) is dedicated to applications of phosphorus budget models, which can above all be used to forecast variations in lake productivity in response to changes in the availability of the limiting nutrient. Graphical abstract


2021 ◽  
Vol 13 (13) ◽  
pp. 2533
Author(s):  
Catherine Kuhn ◽  
Aji John ◽  
Janneke Hille Ris Lambers ◽  
David Butman ◽  
Amanda Tan

Satellite remote sensing has transformed our understanding of Earth processes. One component of the Earth system where large uncertainties remain are Arctic and boreal freshwater lakes. With only short periods of open water due to annual ice cover, lake productivity in these regions is extremely sensitive to warming induced changes in ice cover. At the same time, productivity dynamics in these lakes vary enormously, even over short distances, making it difficult to understand these potential changes. A major impediment to an improved understanding of lake dynamics has been sparsely distributed field measurements, in large part due to the complexity and expense of conducting scientific research in remote northern latitudes. This project overcomes that hurdle by using a new set of ‘eyes in the sky’, the Planet Labs CubeSat fleet, to observe 35 lakes across 3 different arctic-boreal ecoregions in western North America. We extract time series of lake reflectance to identify ice-out and green-up across three years (2017–2019). We find that lakes with later ice-out have significantly faster green-ups. Our results also show ice-out varies latitudinally by 38 days from south to north, but only varies across years by ~9 days. In contrast, green-up varied between years by 22 days in addition to showing significant spatial variability. We compare PlanetScope to Sentinel-2 data and independently validate our ice-out estimates, finding an ice-out mean absolute difference (MAD) ~9 days. This study demonstrates the potential of using CubeSat imagery to monitor the timing and magnitude of ice-off and green-up at high spatiotemporal resolution.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3391
Author(s):  
Arne N. Linløkken

Density estimation of pelagic fish was performed by means of single beam echosounding in 17 lakes within a period of 34 years, from 1985 to 2018. Surveys were performed repeatedly (two to fourteen times) in five lakes. The density estimates ranged from 34 to 4720 fish/ha and were significantly correlated with total phosphorus concentration. The high density in relatively phosphorus rich lakes (TP > 10 µg/L) was comprised of small fish (<20 cm) and was partly due to the higher number of pelagic fish species. The number of pelagic species varied from one, Arctic charr, in the most elevated and oligotrophic lakes, and whitefish dominated in less elevated oligotrophic lakes. In lowland lakes characterized as mesotrophic or tending to mesotrophy, smelt, vendace, and two to three cyprinids comprised the pelagic fish stock. These fish species predate zooplankton effectively, and species composition and body size of planktonic cladocerans was affected by fish density. Large species of Daphnia were lacking in lakes with high fish density, and body size of present species, D. galeata, D. cristata, and Bosmina spp. were negatively correlated with pelagic fish density.


Author(s):  
Tiziana Pedrotta ◽  
Erika Gobet ◽  
Christoph Schwörer ◽  
Giorgia Beffa ◽  
Christoph Butz ◽  
...  

AbstractKnowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100–7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000–4,500 cal bp. Subsequently around 4,000–3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500–3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).


Hydrobiologia ◽  
2021 ◽  
Author(s):  
S. Matern ◽  
T. Klefoth ◽  
C. Wolter ◽  
R. Arlinghaus

AbstractThe type and extent of habitats along the shoreline specify the distribution of fish in the littoral zone of lakes, but effects are likely species and size-specific and might be overwhelmed by lake-level environmental factors that drive fish abundance (e.g. trophic state). We applied a replicated transect-sampling design by electrofishing assessing fish abundance and distribution along the banks of 20 gravel pit lakes in Lower Saxony (Germany). Boosted regression trees were used to analyse the impact of different characteristic habitat types (e.g. vegetated, woody or open water zones), shoreline water depth and lake-level environmental variables on species-specific fish abundances. In contrast to earlier studies, lake-level environment and transect-level habitat type similarly influenced the abundances of differently sized fish species in the littoral zone of gravel pit lakes. The abundance of almost all fish species increased with lake productivity and extent of structured littoral habitats, mostly following non-linear relationships. Our work suggests that investments into the quality of littoral habitat, and not merely the control of nutrient inputs or other lake-level environmental factors, can promote abundance of most gravel pit lake fish species, in particular those who depend on the littoral zone for at least part of their life-cycle.


2021 ◽  
pp. 1-15
Author(s):  
Jenifer A. Leidelmeijer ◽  
Matthew E.C. Kirby ◽  
Glen MacDonald ◽  
Joseph A. Carlin ◽  
Judith Avila ◽  
...  

Abstract Paleoperspectives of climate provide important information for understanding future climate, particularly in arid regions such as California, where water availability is uncertain from year to year. Here, we present a record from Barley Lake, California, focusing on the interval spanning the Younger Dryas (YD) to the early Holocene (EH), a period of acute and rapid global climate change. Twelve radiocarbon dates constrain the timing between 12.9 and 8.1 ka. We combine a variety of sediment analyses to infer changes in lake productivity, relative lake level, and runoff dynamics. In general, the lake is characterized by two states separated by a <200-year transition: (1) a variably deep, lower-productivity YD lake; and (2) a two-part variably shallow, higher-productivity EH lake. Inferred EH winter-precipitation runoff reveals dynamic multidecadal-to-centennial-scale variability, in agreement with the EH lake-level data. The Barley Lake archive captures both hemispheric and regional signals of climate change across the transition, suggesting a role for both ocean-atmosphere and insolation forcing. Our paleoperspective emphasizes California's sensitivity to climate change and how that change can generate abrupt shifts in limnological regimes.


2021 ◽  
Author(s):  
Manon Bajard ◽  
Eirik Ballo ◽  
Helge I. Høeg ◽  
Jostein Bakke ◽  
Eivind Støren ◽  
...  

&lt;p&gt;Understanding how agricultural societies were impacted and adapted to past climate variations is critical to face to contemporary climate change and guaranty the food security (#SDG2 Zero Hunger). However, linking climate and change in the behaviour of a population are difficult to evidence. Here, we studied the climate variations of the period between 200 and 1300 CE and its impact on the pre-Viking and Viking societies in Southeastern Norway, including the adaptation and resilience of the agricultural management. This period includes, between 300 and 800 CE, one of the coldest period of the last 2000 years. We used a retrospective approach combining a multi-proxy analysis of lake sediments, including geochemical and palynological analyses, to reconstruct past changes in temperature and agricultural practices during the period 200-1300 CE. We associated variations in Ca/Ti ratio as a result of change in lake productivity with the temperature. The periods 200-300 and 800-1300 CE were warmer than the period between 300 and 800 CE, which is known as the &amp;#8220;Dark Ages Cold Period&amp;#8221; in the Northern Hemisphere. During this colder period, phases dominated by grazing activities (280-420 CE, 480-580 CE, 700-780 CE) alternated with phases dominated by the cultivation of cereals and hemp (before 280 CE, 420-480 CE, 580-700 CE, and after 800 CE). The alternation of these phases is synchronous of temperature changes. Cold periods are associated to livestock farming, and warmer periods to crop farming. This result suggests that when temperature no longer allowed crop farming, the food production specialized in animal breeding. The result of a Principal Component Analysis show a succession of phases of crisis, adaptation and resilience of the socio-environmental system. The Viking Age (800-1000 CE) started with an increase in temperature and corresponds to the warmest period between 200 and 1300 CE, allowing a larger development of the agriculture practices and society. Our results prove that the pre-Viking society adapted their agricultural practices to the climate variability of the Late Antiquity and that the Vikings expanded with climate warming.&lt;/p&gt;


2021 ◽  
Author(s):  
Edward Duarte ◽  
Jonathan Obrist-Farner ◽  
Alex Correa-Metrio ◽  
Byron A. Steinman

&lt;p&gt;Sediment records have been widely used to reconstruct Holocene environmental and climate conditions around the world. As new Holocene records from Central America and the Caribbean have become available, new hypotheses have emerged to explain the complex hydroclimate variability in the region. Here we present results from a radiocarbon-dated sediment core recovered from Lake Izabal, eastern Guatemala, that covers the last ~9,500 years. We combined sedimentological, XRF elemental abundances, and principal component (PC) analyses to reconstruct changes in erosion/precipitation, lake productivity, and lake water chemistry during the Holocene. Our results indicate that during the early Holocene, Lake Izabal was a shallow lake with minimal catchment erosion/precipitation as indicated by the abundance of organic-rich mud, coupled with the lowest PC scores and titanium (Ti) abundance of the entire record. An overall increase in the PC scores and a progressive increase in Ti suggest that precipitation/erosion increased from 8,300 to 4,800 cal yr BP and remained high until 1,200 cal yr BP. There was then a significant reduction in erosion and precipitation at ca. 1,200 cal yr BP, as evidenced by a sharp decrease in magnetic susceptibility, terrigenic derived elements, and PC scores. We suggest that the transition towards wetter conditions from the early to the middle Holocene, followed by a stable wet climate until ca. 1,200 cal yr BP, was strongly influenced by a progressive increase in autumn insolation throughout the Holocene, which could have caused an increase in Caribbean sea surface temperatures, increasing moisture availability leading to greater precipitation amounts in the Caribbean coast of Central America.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document