scholarly journals Comparison of epidermal growth factor receptor tyrosine kinase inhibitors for patients with lung adenocarcinoma harboring different epidermal growth factor receptor mutation types

2020 ◽  
Author(s):  
Sojung Park ◽  
Sung Yong Lee ◽  
Dojin Kim ◽  
Yun Su Sim ◽  
Jeong-Seon Ryu ◽  
...  

Abstract Background: Epidermal growth factor receptor (EGFR) mutations in non–small-cell lung cancer predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs). EGFR mutation types are associated with efficacy of EGFR TKIs. We investigated the clinical outcomes of afatinib, erlotinib, and gefitinib according to EGFR mutation type in patients with lung adenocarcinoma.Methods: Between May 2010 and December 2018, we investigated 363 patients with advanced lung adenocarcinoma harboring EGFR mutations who received EGFR TKIs. Efficacies of EGFR TKIs such as response rate, progression-free survival (PFS), and overall survival (OS) were retrospectively evaluated according to exon 19 deletion (E19del), L858R point mutation (L858R) and uncommon mutations. Results: The frequency of E19del was 48.2%, that of L858R was 42.4%, and that of uncommon mutations was 9.4%. E19del and L858R were associated with superior PFS and OS compared with uncommon mutations. Erlotinib showed significantly inferior OS than other TKIs (30.8 ± 3.3 in erlotinib vs. 39.1 ± 4.3 in afatinib vs. 48.4 ± 6.3 in gefitinib; p = 0.031) in patients with L858R. Gefitinib showed significantly inferior PFS (4.6 ± 1.1 in gefitinib vs. 11.6 ± 2.7 in afatinib vs. 10.6 ± 2.7 in erlotinib; p = 0.049) in patients with uncommon mutations. Conclusion: Afatinib was significantly associated with a longer PFS, presenting constant effectiveness in all EGFR mutation types. Caution may be needed on the use of erlotinib for L858R and the use of gefitinib for uncommon EGFR mutations.

2005 ◽  
Vol 23 (11) ◽  
pp. 2445-2459 ◽  
Author(s):  
José Baselga ◽  
Carlos L. Arteaga

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase of the ErbB receptor family that is abnormally activated in many epithelial tumors. The aberrant activation of the EGFR leads to enhanced proliferation and other tumor-promoting activities, which provide a strong rationale to target this receptor family. There are two classes of anti-EGFR agents: monoclonal antibodies (MAbs) directed at the extracellular domain of the receptor and small molecule, adenosine triphosphate–competitive inhibitors of the receptor's tyrosine kinase. Anti-EGFR MAbs have shown antitumor activity in advanced colorectal carcinoma, squamous cell carcinomas of the head and neck, non–small-cell lung cancer (NSCLC) and renal cell carcinomas. The tyrosine kinase inhibitors (TKIs) have a partially different activity profile. They are active against NSCLC, and a specific EGFR inhibitor has shown improvement in survival. Recently, mutations and amplifications of the EGFR gene have been identified in NSCLC and predict for enhanced sensitivity to anti-EGFR TKIs. In addition to specific anti-EGFR TKIs, there are broader acting inhibitors such as dual EGFR HER-2 inhibitors and combined anti-pan-ErbB and antivascular endothelial growth factor receptor inhibitors. Current research efforts are directed at selecting the optimal dose and schedule and identifying predictive factors of response and resistance beyond EGFR gene mutations and/or amplifications. Finally, there is a need for improved strategies to integrate anti-EGFR agents with conventional therapies and to explore combinations with other molecular targeted approaches including other antireceptor therapies, receptor-downstream signaling transduction inhibitors, and targeted approaches interfering with other essential drivers of cancer, such as angiogenesis.


2020 ◽  
Vol 19 ◽  
pp. 153303382094042
Author(s):  
Yi-Tian Qi ◽  
Yi Hou ◽  
Liang-Chen Qi

Background: The efficacy of next-generation epidermal growth factor receptor-tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer who have failed first-generation epidermal growth factor receptor-tyrosine kinase inhibitors still remains under investigation. Objective: The aim of this meta-analysis was to systematically assess the efficacy and safety profiles of next-generation epidermal growth factor receptor-tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer who failed first-generation epidermal growth factor receptor-tyrosine kinase inhibitors. Methods: We performed a comprehensive search of several electronic databases up to September 2018 to identify clinical trials. The primary end point was overall survival, progression-free survival, disease controlled rate, objective response rate, and adverse events. Epidermal growth factor receptor-tyrosine kinase inhibitor emergent severe adverse events (grade ≥ 3) were analyzed. Odds ratio along with 95% confidence interval were utilized for main outcome analysis. Results: In total, we had 3 randomized controlled trials in this analysis. The group of next-generation epidermal growth factor receptor-tyrosine kinase inhibitors had significantly improved progression-free survival (odds ratio = 0.34, 95% confidence interval = 0.29-0.40, P < .00001), as well as objective response rate (odds ratio = 10.48, 95% confidence interval = 3.87-28.34, P < .00001) and disease controlled rate (odds ratio = 6.03, 95% confidence interval = 4.41-8.25, P < .00001). However, there was no significant difference in overall survival with next-generation epidermal growth factor receptor-tyrosine kinase inhibitors (odds ratio = 1.05, 95% confidence interval = 0.85-1.31, P = .66). Meanwhile, the odds ratio for treatment-emergent severe adverse events (diarrhea, rash/acne, nausea, vomiting, anemia) between patients who received next-generation epidermal growth factor receptor-tyrosine kinase inhibitors and those who received first-generation epidermal growth factor receptor-tyrosine kinase inhibitors did not show safety benefit ( P > .05). Conclusions: Next-generation epidermal growth factor receptor-tyrosine kinase inhibitors were shown to be the better agent to achieve higher response rate and longer progression-free survival in patients with non-small cell lung cancer as the later-line therapy for previously treated patients with first-generation epidermal growth factor receptor-tyrosine kinase inhibitors. Meanwhile, they did not achieve benefit in overall survival and safety compared with the chemotherapy group. Further research is needed to develop a database of all EGFR mutations and their individual impacts on the various treatments.


Sign in / Sign up

Export Citation Format

Share Document