Functional analysis of a monoclonal antibody reactive against anti-cluster A epitope obtained from a patient infected with HIV-1 CRF02_AG

2020 ◽  
Author(s):  
Hasan Md Za ◽  
Takeo Kuwata ◽  
Shokichi Takahama ◽  
Kaku Yu ◽  
Shaswata Biswas ◽  
...  

Abstract Background: Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and inner domain cluster A mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. Results: We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to cluster A, which consists of C1 and C2 of gp120, and 1E5 binds to 27 out of 35 strains (77%) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and anti-CoRBS antibody, but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-cluster A antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of both anti-cluster A antibodies enhanced ADCC activity. Conclusions: These results suggest that anti-cluster A antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1.

Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hasan Md Zahid ◽  
Takeo Kuwata ◽  
Shokichi Takahama ◽  
Yu Kaku ◽  
Shashwata Biswas ◽  
...  

Abstract Background Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and the C1C2 region mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. Results We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to the C1C2 of gp120, and 1E5 binds to 27 out of 35 strains (77 %) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and 4E9C (anti-CoRBS antibody), but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-C1C2 antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of 1E5, A32 and 4E9C mediated a strong ADCC activity. Conclusions These results suggest that anti-C1C2 antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1. Graphical abstract


2020 ◽  
Author(s):  
Dani Vézina ◽  
Shang Yu Gong ◽  
William D. Tolbert ◽  
Shilei Ding ◽  
Dung Nguyen ◽  
...  

The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant “closed” conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more “open” conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a “trimer mixing” approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized. Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a “cocktail” composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.


2020 ◽  
Vol 8 (5) ◽  
pp. 710 ◽  
Author(s):  
Guillaume Beaudoin-Bussières ◽  
Jérémie Prévost ◽  
Gabrielle Gendron-Lepage ◽  
Bruno Melillo ◽  
Junhua Chen ◽  
...  

HIV-1-infected individuals raise a polyclonal antibody response targeting multiple envelope glycoprotein (Env) epitopes. Interestingly, two classes of non-neutralizing CD4-induced (CD4i) antibodies, present in the majority of HIV-1-infected individuals have been described to mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of small CD4 mimetic compounds (CD4mc). These antibodies recognize the coreceptor binding site (CoRBS) and the constant region one and two (C1C2 or inner domain cluster A) of the gp120. In combination with CD4mc they have been shown to stabilize an antibody-vulnerable Env conformation, known as State 2A. Here we evaluated the importance of these two families of Abs in ADCC responses by immunizing guinea pigs with gp120 immunogens that have been modified to elicit or not these types of antibodies. Underlying the importance of anti-CoRBS and anti-cluster A Abs in stabilizing State 2A, ADCC responses were only observed in the presence of these two types of CD4i antibodies. Altogether, our results suggest that these two families of CD4i antibodies must be taken into account when considering future strategies relying on the use of CD4mc to eliminate HIV-1-infected cells in vivo.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Rajesh P. Ringe ◽  
Gabriel Ozorowski ◽  
Kimmo Rantalainen ◽  
Weston B. Struwe ◽  
Katie Matthews ◽  
...  

ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes.


2021 ◽  
Author(s):  
Jonathan Richard ◽  
Dung Nguyen ◽  
William D. Tolbert ◽  
Romain Gasser ◽  
shilei ding ◽  
...  

In HIV-1 infection, many antibodies (Abs) are elicited to Envelope (Env) epitopes that are conformationally masked in the native trimer and are only available for antibody recognition after the trimer binds host cell CD4. Among these are epitopes within the Co-Receptor Binding Site (CoRBS) and the constant region 1 and 2 (C1-C2 or Cluster A region). In particular, C1-C2 epitopes map to the gp120 face interacting with gp41 in the native, closed Env trimer present on HIV-1 virions or expressed on HIV-1 infected cells. Antibodies targeting this region are therefore non-neutralizing and their potential as mediators of antibody depended cellular cytoxicity (ADCC) of HIV-1 infected cells diminished by a lack of available binding targets. Here we present the design of Ab-CD4 chimeric proteins that consist of the Ab-IgG1 of a CoRBS or Cluster A specificity to the extracellular domain 1 and 2 of human CD4. Our Ab-CD4 hybrids induce potent ADCC against infected primary CD4+ T cells and neutralize tier 1 and 2 HIV-1 viruses. Furthermore, competition binding experiments reveal that the observed biological activities rely on both the antibody and CD4 moieties confirming their cooperativity in triggering conformational rearrangements of Env. Our data indicate the utility of these Ab-CD4 hybrids as antibody therapeutics effective in eliminating HIV-1 through the combined mechanisms of neutralization and ADCC. This is also the first report of single-chain-Ab-based molecules capable of opening closed Env trimers on HIV-1 particles/infected cells to expose the Cluster A region and activate ADCC and neutralization against these non-neutralizing targets.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Sai Priya Anand ◽  
Jérémie Prévost ◽  
Sophie Baril ◽  
Jonathan Richard ◽  
Halima Medjahed ◽  
...  

ABSTRACTHIV-1 conceals epitopes of its envelope glycoproteins (Env) recognized by antibody (Ab)-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These Abs, including anti-coreceptor binding site (CoRBS) and anti-cluster A antibodies, preferentially recognize Env in its “open” conformation. The binding of anti-CoRBS Abs has been shown to induce conformational changes that further open Env, allowing interaction of anti-cluster A antibodies. We explored the possibility that CoRBS Abs synergize with anti-cluster A Abs to engage Fc-gamma receptors to mediate ADCC. We found that binding of anti-CoRBS and anti-cluster A Abs to the same gp120 is required for interaction with soluble dimeric FcγRIIIa in enzyme-linked immunosorbent assays (ELISAs). We also found that Fc regions of both Abs are required to optimally engage FcγRIIIa and mediate robust ADCC. Taken together, our results indicate that these two families of Abs act together in a sequential and synergistic fashion to promote FcγRIIIa engagement and ADCC.IMPORTANCEThe “open” CD4-bound conformation of HIV-1 envelope glycoproteins is the primary target of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies present in HIV-positive (HIV+) sera, such as anti-coreceptor binding site and anti-cluster A antibodies. Here we report that the binding of these two families of antibodies is required to engage FcγRIIIa and mediate ADCC.


2005 ◽  
Vol 79 (16) ◽  
pp. 10108-10125 ◽  
Author(s):  
Ming Li ◽  
Feng Gao ◽  
John R. Mascola ◽  
Leonidas Stamatatos ◽  
Victoria R. Polonis ◽  
...  

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.


mBio ◽  
2021 ◽  
Author(s):  
Jonathan Richard ◽  
Dung N. Nguyen ◽  
William D. Tolbert ◽  
Romain Gasser ◽  
Shilei Ding ◽  
...  

Highly conserved epitopes within the coreceptor binding site (CoRBS) and constant region 1 and 2 (C1-C2 or cluster A) are only available for antibody recognition after the HIV-1 Env trimer binds host cell CD4; therefore, they are not accessible on virions and infected cells, where the expression of CD4 is downregulated. Here, we have developed new antibody fusion molecules in which domains 1 and 2 of soluble human CD4 are linked with monoclonal antibodies of either the CoRBS or cluster A specificity.


2019 ◽  
Vol 42 (4) ◽  
pp. E2-E6 ◽  
Author(s):  
Andrés Finzi

The human immunodeficiency virus (HIV-1) envelope glycoprotein trimer (Env) is exposed on the surfaces of both virions and infected cells. Thus, Env is the principal target for neutralizing antibodies and antibodies able to mediate antibodydependent cellular cytotoxicity (ADCC). The HIV-1 Env is a flexible molecule known to exist in at least three different conformational states: states 1, 2 and 3. Before interacting with the primary receptor, CD4, Env preferentially adopts a compact, “closed” conformation (state 1) that is largely antibody-resistant. The CD4 binding “opens” Env increasing the vulnerability of infected cells to ADCC mediated by non-neutralizing antibodies, as these easily-elicited antibodies preferentially recognize epitopes exposed in the open conformational states (states 2/3). These antibodies include the anti-coreceptor binding site and the anti-cluster A families of antibodies that, in combination with small CD4-mimetic compounds, stabilize a new asymmetric Env conformation (state 2A) that is vulnerable to ADCC. Approaches aimed at stabilizing this “open” conformation represent new interventional approaches to fight HIV-1 infection.


2015 ◽  
Vol 89 (17) ◽  
pp. 9090-9102 ◽  
Author(s):  
Rajnish Kumar ◽  
Ruimin Pan ◽  
Chitra Upadhyay ◽  
Luzia Mayr ◽  
Sandra Cohen ◽  
...  

ABSTRACTThe V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown (307IHIGPGRAFYT319), dominated by interactions with HisP308, ProP313, and ArgP315. The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens.IMPORTANCEHIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.


Sign in / Sign up

Export Citation Format

Share Document